
A Lisp through the Looking Glass

submitted by J. C. G. Sturdy
for the degree of Ph.D.

of the University of Bath
1991

COPYRIGHT

‘Attention is drawn to the fact that the copyright of this thesis rests with its
author. This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognize that its copyright rests with its author
and that no quotation from the thesis and no information derived from it may
be published without the prior written consent of the author.’

‘This thesis may be made available for consultation within the University
Library and may be photocopied or lent to other libraries for the purposes of
consultation.’

2

Summary

This thesis presents a new architecture for programming language inter-
preters, in which interpreters are not only first-class values, but are also arranged
in a tower of meta-circular interpretation which is accessible reflectively—so that
a program may modify elements of the meta-circular tower under which it runs,
and thus cause changes in the manner of its own interpretation.

To facilitate such modification, we develop a representation for interpreters
that splits each interpreter into a language (a collection of independently im-
plemented constructs) and an evaluator (connecting the constructs together).

To implement such a mutable infinite meta-circular interpreter, we need
another interpreter outside the tower, the meta-evaluator. We present this,
along with a systematic way of linking it to the meta-circular tower. We show
that a further form of meta-circularity may be introduced by bringing the meta-
evaluator into the reflectively accessible part of the system; and that this may
be repeated without limit, using the same techniques.

These techniques for meta-interpretation are then shown to be similar to the
“language and evaluator” model for interpretation, and a concise version of the
system is presented that uses common code for many of these functions.

Provision for reflective and mixed language facilities pervade the infrastruc-
ture of the system. We show that despite all this power, it is possible to im-
plement such a system efficiently—well within an order of magnitude of the
performance of a single-language non-reflective system—and we show how a
wide range of languages may be implemented on this infrastructure, which also
allows transparent mixed-language programming.

3

Acknowledgements

Acknowledgements are due to many:

• God for making the universe so very reflective

• Julian Padget for supervising and encouraging me

• James Davenport and John ffitch for assorted ideas and advice

• Phil Yelland for discussions of the more mathematical parts of reflection

• Jim des Rivieres, Olivier Danvy and Karoline Malmkjær for comments

• My family and friends, particularly Nicky Sanders, for encouragement

• Harlequin Ltd for providing facilities while I was working part-time on this
thesis, and for writing the Lisp system I used

• My colleagues at Harlequin, especially Mark Tillotson, Colin Meldrum,
and Pekka Pirinen, for assorted discussions on Lisp-related topics and
advice on getting the fastest code from the compiler

• The friars for putting up with me at their guest-house, and particularly
Brother Edmund for discussions on the metaphysics of reflection

• Other research students whose work overlapped with mine in time, partic-
ularly John, Russell, Val, Phil, Mary, Andrew, Daniel, and Isobel

• And, of course, SERC for funding the project—ever present, but usually
only visible as a series of forms shadowing what was actually going on.

4

Contents

5

6 CONTENTS

Chapter 1

Survey

1.1 The background to this thesis

An active area of research in Computer Science concerns the manipulation of
programs by other programs, and investigates the use of automatic logical rea-
soning systems to reason about programs. It has come to the attention of many
researchers that, if it is useful for a program to manipulate, and reason about,
other programs, it may be even more useful for it to be able to manipulate and
reason about itself—that is, to reflect on itself.

Reflection differs from one program working on another program in one im-
portant respect: changes made by the program to itself must affect the behaviour
of the program, and, correspondingly, the behaviour of the program must affect
what the program sees of itself. Thus, there is a causal link between the program
as agent and the program as subject. A overview of the implications of this,
with a survey of some seminal work in the area, is given in [?].

To be able to make sense of a running program as a subject, we must take
it in the context of

• the language in which it is written

• the active evaluating agent that interprets it as a program in that language

Therefore, in this thesis, we include the language and the evaluating agent as
part of the subject program. Once we make the language part of the subject,
we are handling languages as data values, and so can also handle systems that
allow each program to be written in a mixture of languages.

By including the evaluator (or interpreter) explicitly in our model of compu-
tation, we add another layer, or level, to the interpretation; as we look further
into the model, we find that the evaluator itself must be interpreted likewise,
and so on, and so we add an infinite number of levels of interpretation [?]. It has
already been shown [?] that it is possible to implement an interpretive system
for a single language using this infinite number of levels of interpretation, with
little less efficiency than a normal interpreter. In this thesis, we investigate the

7

8 CHAPTER 1. SURVEY

possibility of doing this for a system with explicit and variable languages; and
at the same time, in investigating further the nature of interpretation itself, we
change the infinite tower of levels of interpretation to an infinite tower of infinite
towers . . . of infinite towers of levels of interpretation.

Though a tower of interpretation is slightly more complicated to construct
than a plain interpreter, it makes it simpler to modify the interpreter later, for
example to add new language features. When used as a construction kit for
building mutually compatible interpreters in a mixed-language environment,
the slight extra complexity is adequately compensated for by the ease of adding
features and even whole languages within the framework.

Just as the tower model simplifies the construction of individual components
based on it, the meta-tower simplifies the construction of the tower in a very
similar way, and, since the relationship of successive meta-towers is the same
as the between a tower and its meta-tower, it can also be said to simplify its
own construction, through the development of a regular model for towers and
meta-towers.

The implementation of a system using this model turns out to be concise
and elegant, and when refined as far as possible appears to be rather simpler
than the ad-hoc systems of which it is a replacement and superset.

When we include the evaluator as part of the subject of the program, we give
the program access to the thing which defines the meaning of the program–and
through this, the program can manipulate its own meaning or interpretation.

Since this involves operations on the interpreter of the program, the meaning
of the interpreter must be defined in some way. The interpreter is a program
(hardware interpreters–computers–are outside the scope of this thesis) and so
its meaning is determined by the interpreter of that program. Thus, we see an
infinite tower of interpreters defining the meaning of a program. For a program
to inspect and manipulate its interpreter meaningfully, it must also have access
to the whole tower of levels of interpretation (which, for practical purposes,
come into existence only as needed–a lazily generated tower).

1.2 Reflection into context

Reflection is not simply a programming tool, but a general model for describing
a wide range of things that perform processes in some intelligent manner. While
this thesis is confined almost entirely to Computer Science, it is often helpful
to see the field in the contexts of psychology and philosophy, harnessing the
anthropomorphising tendencies of the human mind to make useful analogies
regarding self and meaning.

Since the search for the definition of the meaning of an action (process,program,
utterance, trace) leads toward our projection of meaning onto a free formula—
something which does not have meaning until taken in a particular context—
some philosophical digression from the mathematical logic is used in places to
give a meaning to the mathematics uttered.

1.3. RELATED AREAS OF PROGRAMMING LANGUAGE RESEARCH 9

1.3 Related areas of programming language re-
search

In constructing a system for handling programs and their environments, we
must draw from several areas of Computer Science, as well as adding new ma-
terial concerning the causal link between action and behaviour. While using
techniques from these areas, we also contribute techniques that they can use.

Grammars

A program must be written according to the grammar of the language in which
it is written. To manipulate programs, we must have formal grammars of the
languages in which they are written.

This area has been researched extensively, and the results of this research are
in common use, not only for constructing programming language systems, but
also in many other areas of information processing, as all computer-manipulable
information must be in a form describable by a grammar.

In this work, the grammars we use (both formally and informally) are those
describing programming languages—particularly procedural programming lan-
guages. To bring a language into the system developed here, a grammar for it
must be provided, describing the lexical and syntactic aspects of the language,
to enable some program, called a parser or lexical analyzer, (with which we are
not concerned here) to convert (parse) the textual form of each program into a
parse tree or abstract syntax tree. This conversion may be a bare transliteration
of the program text, or it may include annotation—an augmented syntax tree—
for example, global and local variable references may be distinguished explicitly
in the parse tree. Some languages, notably non-procedural, non-functional ones,
may require considerable processing at this stage; for example, prolog programs
could be procedurized here.

Many tools for generating parsers are available. The best known are perhaps
those provided on the Unix system: Lex (a lexical analyzer generator) and
YACC (a syntactic parser generator, also sometimes used to generate the main
framework of a compiler). These work across the boundary between textual data
processing and symbolic data processing, and both are mixtures of an existing,
general-purpose programming language, C, with specialized languages. Lex and
Yacc (or similar tools) may be used to complement the work behind this thesis;
and the work presented here helps, in turn, to formalize the language mixtures
in which Lex and YACC grammar descriptions are written.

This thesis looks very little at the lexical and grammatical levels of language
processing—it is treated as being largely a separate task. However, a full mixed-
language system would have to be able to accept grammatical descriptions as
well as the semantic descriptions that the present system uses.

10 CHAPTER 1. SURVEY

Interpretation

Reflective program execution is both a form of interpretation, and a tool for
studying interpretation. Some techniques from writing conventional interpreters
apply here; more significantly, reflective programming is a new technique for
constructing interpreters, and may be used as such either by itself, or in con-
junction with other techniques. It also provides a framework in which to reason
about interpreters.

The reflective model of interpretation has several advantages over ad-hoc
interpreter architectures. Not only does it make it possible for an ordinary pro-
gram to extend the interpreter, but it also makes the design and implementation
of interpreters more systematic–perhaps making it less of an art and more of an
exact science.

With a well-defined model of interpretation, constructing and debugging
interpreters becomes easier, and it is possible to write tools to assist in writing
and testing them.

Partial evaluation

Partial evaluation is an interpretation technique in which a program is run as
far as possible on the data available to it at the time, reducing it to a residual
program which accepts some or all of the remaining data to procede to another
residual program or to the result. Whereas reflective interpretation tends to add
new levels of interpretation to the execution of a program, partial evaluation can
remove levels of interpretation by combining them with adjacent levels, which is
done by evaluating the interpreter with the program that it interprets as input.
Thus, partial evaluation and reflection may have complementary effects on the
interpretation of a program. This effect is described and explored in [?], which
explains how partial evaluation and reflection may be used together, giving the
advantages of reflection, while collapsing the extra layers that it can introduce.

Compilation

Compilation, like partial evaluation, reduces a program, and so in some sense
opposes reflection. It is sometimes possible to compile a reflective program into
a non-reflective one, thus allowing systems developed under reflective interpre-
tation to become more efficient compiled programs.

Mixing

Mixing [?] is a form of partial evaluation that allows for self-reference by the
evaluator, and, through this, allows the evaluation to specialize interpreters
to run particular programs. This is a form of compilation, as it reduces an
interpreter I in a language Li and a program P in a language Lp to a combined
program IP , with the same meaning as P , but in the language Li. It can
also evaluate itself, M (the Mix program) with respect to any interpreter Ia in

1.4. WHY DO WE WANT REFLECTION? 11

language La, leaving a residual program MI that accepts programs Pb in any
language Lb and produces combined programs IPa—this residual program is a
compiler. Mixing the mixer with itself produces a residual program that accepts
interpreters Ia to produce residual programs MIa—this is a compiler-compiler.
Although this self-reference is not causal, there are some strong similarities
between mixing and reflection, as both relate program and interpreter [?].

Abstraction

Handling data obtained from the state of a running program requires a suitable
abstraction for program interpretation; such abstractions are discussed in [?]
and [?]. Such an abstraction also provides a tool for further abstraction in the
field, as it describes causal self-reference abstractly.

The abstraction must describe not only programs in their static form, but
also the active process of running them. As it turns out, a suitable abstraction
for this is reflective interpretation itself—the very feature that required the ab-
straction in the first place. Such cycles of reference as this are natural in this
work, as the systems described and implemented include descriptions and imple-
mentations of the abstractions used in their descriptions and implementations.
This goes against the traditional form of semantic definition, of which the main
aim is to describe the system in terms of things outside the system itself. Here,
we prefer to include a description of the system within the system, and describe
how something outside the system may project a meaning onto the system, and
thereby may give it an external definition. We then show how a system may be
constructed that includes within itself a description of how an outside system
may project a meaning onto the system.

1.4 Why do we want reflection?

Reflection is useful both as a tool for abstract description and manipulation of
programs and other active agents, and as a practical programming tool. Ac-
tive agents here can mean anything that has defined behaviour and processes
information, such as a computer, a program, an organization, or an animal.
Reflection describes a causal link between abstract information handling and
concrete behaviour. In mentalistic terms [?], it is the part of introspection that
links the self as the subject of reasoning to the self as reasoner. This works in
both directions: it links observation of the self to reasoning, and reasoning to
action on the self—which is part of learning. A fully reflective agent can reflect
upon reflection, and can thus can observe observation, reason about reasoning,
and learn about learning.

Reflection is interesting and general

The idea of reflection is useful for describing either reflective or non-reflective
interpretation of programs. It can describe programs, languages and processing

12 CHAPTER 1. SURVEY

agents. It describes the meaning of any of these, and, as described in this thesis
and other work [?] [?], relates the extensional meaning of something—that is,
its description, or what the thing means—to the intensional meaning, that is,
how it works, or its implementation. It does this by putting the intension into
a frame of reference which binds it to the world outside the description, that is,
the extension.

In mentalistic terms [?] we manipulate our surroundings (as we perceive
them) in terms of abstract concepts, a form of manipulation that is widely
accepted as being deeply connected with our linguistic faculties. For example,
hammering a nail involves the concept of momentum; even if someone does not
have a spoken name for it, they must have this specific (and hence nameable)
concept in order to understand why hammering is more effective then steady
pressure applied with the hammer. Earlier work on procedural reflection allowed
programs to modify their language environments but did not have a specific
model for languages as data values. Here, we make it possible to reflect on
languages more formally and abstractly than before.

Describing and implementing languages

Reflection, in the form used here, links a program with its interpreter in such a
way that the program can modify the interpreter [?]. By adding new features
to the language, then removing the features of the original language, a program
can construct an implementation of another language, and continue to run in
that language instead of the original one.

This is a novel approach to language definition, and offers interesting prospects
for programming in general. Not least among the possibilities is that of tailor-
ing a application-oriented programming language for a particular program, as
part of the application program and in terms of the application-oriented lan-
guage rather than as part of a separate language processing program written in
a language less suited to the application domain.

This form of language implementation also makes language development and
debugging more like other application development. Debugging facilities pro-
vided within the language system can be used on the language system, and new
debugging facilities (for example, printing messages at points in the code) for
working on the language can be inserted just as they can be into an application.

Program debugging

Reflection provides some useful facilities for debugging programs, such as access
to the program’s state as data—this data can then be passed to an inspec-
tion tools, as is done in SmallTalk-80 [?]. Such data can then be modified,
and installed back in the program to continue running it. The routines to dis-
play, manipulate and re-install the reified data may be written as part of the
application program (and thus in the language of the application, not of the
interpreter), and so the debugging facilities can be presented in terms of the
application domain.

1.5. APPROACHES TO REFLECTION 13

New possibilities

Reflection opens some new possibilities; one example that has been investigated
(but not found to have any important practical use) is migration [?]: for a
program to transmit its state and data to another host computer, and continue
running on its new host. It has been demonstrated that such a facility can be
made machine-independent, and so can be used to make programs that install
themselves intelligently on new machines.

Another possible application of reflection is explanation in expert systems,
where a program can go through the code and state of its own reasoning to
explain why it reached a particular conclusion. An example of a system that
does this is SHRDLU [?], a system for manipulating solid block in response to
natural-language commands. SHRDLU is capable of answering questions about
why it had to make particular parts of a sequence of movements (for example,
moving a block to be able to pick up one from beneath it).

Since reification takes a snapshot of a running program (or returns a handle
into the running copy of the program), and reflection resumes the execution of
the snapshot, it is possible to take checkpoints, either in case of the program or
computer crashing later, or for holding versions of a program in various useful
states: for example, a PostScript program could be frozen at the end of each
page (thus collecting all the global state changes accumulated by running all
the preceding pages) to make a collection of programs ready to run any specific
page without working through all the preceding ones.

1.5 Approaches to reflection

There are two approaches to reflective interpretation:

• flat reflection, in which the program is given access just to itself and,
perhaps, to its own processing agent. This is described in [?].

• tower reflection, in which the program also has access to its processing
agent’s processing agent, and so on, infinitely. This is described in [?]; [?]
presents a summary of this, which is more accessible.

Of these two approaches, tower reflection is a better study of the general process
of interpretation, as it requires a general definition of the link between a running
program and its interpreter. It is also the more powerful, as it allows successive
transformations on the interpretation process to be composed (for example, lazy
evaluation and program tracing).

1.6 Why mixed languages?

Writing programs in a mixture of languages has been possible for some time
now, and there have been many formal descriptions of individual languages.
However, little work has been done to describe mixed-language programming,

14 CHAPTER 1. SURVEY

except in some specific cases such as the Poplog system [?], which combines Pop-
11, Lisp and Prolog. Mixed language programming has shown its usefulness in
several ways; for example, in creating new languages which draw on features of
existing language (make using sh on Unix is a common example); and in access-
ing obscure features (such as asm statements in C; FORTRAN-based arithmetic
libraries called from a variety of languages). Some problems have solutions in
which different areas of the problems are best tackled by different languages,
for example the pic | refer | eqn | tbl | troff combination of text pro-
cessors on the Unix system, where each of the components is good at just its
own proper task, but either weak or completely incapable in the other areas (for
example, making a table with eqn or a mathematical display with tbl or refer
is difficult and generally inappropriate).

1.7 Summary of survey

The mechanisms of program interpretation may be analyzed into several ar-
eas, some of which are currently active research areas. These include pro-
gram transformation, partial evaluation, reflection, and mixed-language pro-
gramming. This thesis concentrates on the latter two.

Reflection—the causal link between actions of a program and its state, text,
behaviour and environment—combines ideas from interpretation theory, logic,
mathematical philosophy, linguistics, compilation, abstraction and other fields
of Computer Science. It also contributes new techniques which may be used in
these, and other, fields.

Mixed-language working is already common practice, but has not been for-
malized. Its existing use argues strongly for its usefulness, and the limitations
on its present use, and its current haphazardness argue for further development
of the ideas underlying it.

In common between these fields is the systematic definition of programming
language interpreters, and the idea of provision of meaning for a value in terms
of the context surrounding it (including its interpreter).

“I should see the garden far better,” said Alice to herself, “if I could get
to the top of that hill: and here’s a path that leads straight to it—at

least, no, it doesn’t do that—” (after going a few yards along the path,
and turning several sharp corners), “but I suppose it will at last.”

Alice, Through the Looking Glass, Chapter 2

Chapter 2

Introduction

The design of programming systems has traditionally been divided into two
parts: the program being executed, and the evaluator executing it. The tech-
niques for designing and implementing each have been kept largely separate,
although they have much in common, particularly when the evaluator is itself a
program (an interpreter). This work aims to bring them together, allowing the
techniques of both to be used in each, by adding some special facilities to an
interpreter. My thesis is that these facilities may be added, and this without
unreasonable overhead in program execution time. Since this field is connected
largely with program and language development work, this means that the over-
head must be reasonable in the context of a large-scale prototyping system, a
factor of ten being chosen as a reasonable limit. A program or language devel-
oped on such a system can then be delivered on one in which these facilities are
either attenuated or removed altogether, thus bringing the speed of execution
up to that of a comparable conventional system. In researching this thesis, I
developed several versions of a language implementation framework Platypus,
which have tended to support this thesis.

2.1 Languages, interpreters and programs

In the terms used here, a programming language (or just language) is a collection
of operators, with definitions of what each operator means, and rules relating
the different operators. An operator, in this sense, is the part of an expression
or statement that determines what the rest of the statement means—that is,
how the expression is to be interpreted. It is a token or symbol value, which is
distinct from other such symbols, but, in itself, carries no further meaning. To
have meaning, an operator symbol must be taken in the context of its language.

A program is a specification of some actions or functions, written in a pro-
gramming language. Each function has a name and a body or expression. The
language defines the meaning of the program by defining the meaning of each
expression of the program and the way the parts are connected.

15

16 CHAPTER 2. INTRODUCTION

An interpreter uses the meaning inside the program to cause actions which
are outside the program but inside the interpreter. The interpreter then causes
action in the computer’s peripherals to produce an effect that has meaning
to an observer outside the computer. Thus, the meaning of the program is
extracted from its representation in the program, and hence mapped into a
different representation in a different domain.

An interpreter for a language puts these actions to work, using the rules
to find its way from one operator to another. It is an active definition of the
meaning of each operator and of the structure of the language.

Without a language, the program is without meaning. The program by itself
is just an abstract formula in a free algebra,which does not express anything. To
have meaning, it must be understood in the context of a particular language.
To clarify this, consider this sentence. Without English, it would make no sense.

Taken with a language, the program can be manipulated between equiva-
lent forms, but expresses nothing. Such manipulations are similar to reading a
sentence in a natural language while writing out definitions of each word found
from a dictionary and using structure descriptions in a grammar book; this per-
formance does not need any interpretation of the sentence in any language. The
program by itself is purely a data value of a type specified by the language.

But a language also can be regarded as a value in a free algebra, which
can be manipulated, and applied to programs (or have programs applied to
it). Continuing the analogy with natural languages, it is like a a combined
dictionary and grammar book: it can be used to transform sentences, without
understanding the language.

Neither the program nor the language have any further meaning unless han-
dled by an active processing agent that makes it do something in the structural
field [?] of that agent, that is, the world of things that the agent knows about
and manipulates. We call such an agent an evaluator. The evaluator might
be the circuitry and microcode of a computer, or perhaps it might be another
interpreter. The evaluator, which is a concrete representation of an abstract
language, gives meaning to the program, and in turn the program gives mean-
ing to its input data, that is, makes results from them. The language is given
its meaning by the evaluator, which is part of the interpreter—an interpreter is
a combination of language and evaluator. This gives us

where the evaluator provides the meaning, which, in the traditional understand-
ing of computation, it conjures up from nowhere in particular. In this thesis,
we examine the way in which each part of a computation involving evaluator,
language and program gives meaning to the other parts, and the way in which
a meaning can be given to the outermost evaluator so that the evaluator can
then give meaning to the rest.

To clarify this, consider this sentence. With no-one to read it, it means
nothing to anyone.

Later in this thesis we refer frequently to languages, interpreters and eval-
uators, and it is important to distinguish between them. As we use the terms

2.1. LANGUAGES, INTERPRETERS AND PROGRAMS 17

here, a language is analogous to a combination of grammar book and dictionary,
as described above. An evaluator is an active agent, capable of doing something
with a language and a program. An interpreter is an evaluator equipped with
a language, which is then capable of doing things with expressions in that lan-
guage.

An algebra of interpretation

In order to compute about computation, we must be able to represent infor-
mation about computation, in a form which can be manipulated by a program.
One such form, that has been used extensively in research on computation, is
the partial program, which is evaluated through partial evaluation or reduction.
Partial evaluation of a program proceeds as far as possible with the parameters
available, leaving a partial program which will accept the other parameters giv-
ing another partial program. The object that remains once all parameters have
been accepted and substituted is the result of the evaluation.

For example, the partial program

λab.(a + b) (2.1)

when partially evaluated with just one argument, produces a partial program
which adds that first value to a value that it accepts as its only argument:

(λab.(a + b))2 → λb.(2 + b) (2.2)

which when applied to a second argument produces the result

(λb.(2 + b))3 → 2 + 3 → 5 (2.3)

Application of interpreters to programs, and in turn of computers to in-
terpreters, is described in an abstract form in the Futamura projections [?]
and implemented in the Mix system [?].These projections use partial programs
throughout, and describe how an interpreter may be mixed with a partial pro-
gram to specialize the program further, thereby compiling it. Partial evaluation
for Scheme is described in [?].

In Mix, the partial program representation is based on Lisp and on the
lambda calculus. An interpreter is simply a function, as is the program, and
the two are brought together by an external mechanism, the partial evaluator
(or Mixer). In this thesis, the structure of a program, and that of the inter-
preter, are again similar, but we add a mechanism which links each program to
its interpreter, and defines the relationship between them. This is a formal de-
scription of the connection between a program and its interpreter, and enables
us to reason about the abstraction of interpretation and to compute with its
representation, which is not possible in non-reflective systems.

Including the computer in the software

In this thesis, we examine ways of including the evaluator (which could be a
computer, or an program running on a computer) within our system for de-

18 CHAPTER 2. INTRODUCTION

scribing the meaning of things. This enriches our ability for giving meaning to
computational processes and values, and allows us to manipulate those mean-
ings both formally, for reasoning about them, and computationally, for handling
their representations as program-as-data.

Let us now look at some properties of the components of a system that com-
putes. In listing these properties, we will call the specification of what something
does its algorithm. In functional programming, the same specification would be
called a function definition. We take algorithm to be the more general term,
and to embrace functional definitions. Proponents of algorithmic languages do
not consider a language not to be algorithmic if it allows function definitions;
whereas proponents of functional languages deem a language not to be truly
functional if it allows algorithmic definitions. It is in deference to this that I
have treated algorithm as a more general term than function—the two are both
fully general.

• An evaluator is an active entity—that is, it performs some action (a pro-
cess) upon something (a subject) in a structural field

• An evaluator is also an algorithmic entity—the action that it performs is
prescribed by an algorithm

The above two items are the full defining properties of an evaluator. We can
also see the following properties of programs:

• A program is an algorithmic entity.

• A program being evaluated is an active entity, by virtue of the action of
the evaluator that evaluates it.

• A program being evaluated acts on its subject.

• A program being evaluated is thus also an evaluator, for its subject.

and from these properties, we can extend the formula on page 18 into a more
regular structure, in that neither is the program any longer a singular piece at
one end of the formula, nor is the evaluator a singularity at the other end:

In this formula, the evaluator in one system is equivalent to the program of a
second system. The evaluator of the second system is in turn a program running
in another system, and so ad infinitum. Each of these systems is known as a
level of meta-circular interpretation, and the chain of levels is called a tower.
This thesis is concerned both with the building of such levels, and with the
ability to pass information between adjacent levels.

While much has been written about the theory and practice of program
design and about the design1 and implementation of languages, little has been

1Actually, not so much about the language design as the collections of features included in
the language.

2.2. TERMINOLOGY: REIFICATION AND REFLECTION 19

done to link theory and practice with a theoretically sound and soundly practical
bridge. The ideas of structured and functional programming reach out across
this gap, but cannot address the link between programming in a language to
the programming of the language—that is, its implementation. They can only
address issues concerning one realm of programming—either the program in a
given language, or the program in some language, that incidentally implements
a language (either the same one or another one). The latter is the programming
of a language.

To address this gap a way is needed to apply developments in the technology
of software implementation to language implementation. Such a way may be
found through defining language interpretation as a programmed process, with
a definite model for how an interpretation is computed. With this new model,
language implementation is now described as a specific form of programming,
with a formal connection between the problem domain and the program domain.

Some possible reduction in execution speed, mentioned at the start of this
chapter, might come from making interpreters conform to this model rather than
taking an arbitrary form. One of the aims of this thesis is to find how efficient
interpreters in this model may be, compared with traditional interpreters.

2.2 Terminology: Reification and Reflection

A pair of techniques called reification and reflection, not found in most comput-
ing systems, begin to build a bridge between languages and the programs which
are written in them. They build this bridge by describing the domains of the
elements and rules from which the language is built, in terms of the domains of
values which can be handled by the program, and allowing the program access
to itself and to its interpreter in these terms. Use of such access for inspection
is called reification, and for modification is called reflection. For example, a
language which allows a program to store a stack frame for use as part of the
target of an interprocedural jump (such as longjump in BCPL and C) provides
a reifier for stack frames. The reflector for stack frames is part of the actual
jumping operation.

Terminology

Reification and reflection are complementary actions. In some of the existing
literature, the term reflection is used for them both. Likewise, a system ar-
chitecture providing them may be known either as a reified architecture or as
a reflective architecture. In this thesis, we use the two terms mainly in their
proper rôles. When a general term for both together is needed, we use reflection.

An operator that returns part or all of the state and code of the system
is called a reifier, and one that sets it from its argument is called a reflector.
Reifiers and reflectors that operate on the whole state we call grand reifiers and
reflectors. Those that operator by evaluating a piece of code in a new context, in
which reification or reflection has been done which leaving the original context

20 CHAPTER 2. INTRODUCTION

unchanged, are called pushy reifiers and reflectors, as they push a new context
to reify or to reflect (like a procedure call pushing a return address) whereas
those that return or set things in the current state are called jumpy (like a GOTO
jumping without saving any return address). (The terms jumpy and pushy come
from [?].)

We will use the term program text or just text, or code, for the representation
of a program. The actual representation of the program is immaterial. The text
is certainly not necessarily stored as actual text. In practice, we store it as a
parse tree. This way, all considerations of the concrete syntax of a language are
removed from the discussion (see section ??), and we can concentrate on the
more abstract aspects of the language.

The state of execution of a computation—the combined contents of all its
variables, along with the current point of execution and the stack of saved
execution points at procedure calls—we refer to as the state of the program.

An extensional definition of an operator is given in terms of absolute meaning—
what the operator is meant to do—whereas an intensional definition is in terms
of how it works. In tower reflection, this distinction coincides closely with the
distinction between operators used to implement a tower from outside, and op-
erators inside that tower.

The closure of a procedure is a value that represents the text of that pro-
cedure along with any data that it requires, that is, with the bindings of any
variables that it accesses but does not define. We say that the text and variables
are closed over by the closure.

For use in mixed-language interpretation, we extend the closure to contain
also the language and a means for applying the language to the rest of the
closure. This we call an interpretive closure, but we will often simply refer to it
as a closure. For consistency, we close the rest of the state into it, too.

Referential transparency is the property of a language by which an expression
may be made into a separate (named) function, and then a reference to that
function (by name) used transparently anywhere where the original expression
was used. It is important for abstraction.

Procedures here may return results. Like Scheme [?], we call functions (in the
computational sense) procedures, keeping functions for mathematical functions.
Here the extensional equivalent of any given procedure is a function. Procedures
are, implicitly, intensional.

Notation in formulae

We use a notation similar to that used for reduction in [?, Chapter 3]. We write
“x interprets y” as

x → y (2.4)

and “im interprets am in n steps of computation” as

im
n→ am (2.5)

2.3. FORMS OF REFLECTION 21

We write “y is accessible (visible, reifiable) to x” or “x looks at y” (these are
equivalent) as

x •<y (2.6)

which reads in words as “x looks at y”.
Where we use two distinct symbols for equality in describing values, we use

‘a ≡ b’ to mean ‘a and b are (structurally) equivalent values’ (equal in Lisp
terminology), and ‘a = b’ to mean ‘a and b are the same value’ (eq in Lisp).

A reflective system, although it may appear to make the evaluator on which it
runs into a manipulable data value, must eventually be executed by an evaluator
running on a conventional language system. We call this the substrate evaluator,
and the language in which it is implemented, the substrate language.

2.3 Forms of reflection

A program is a value in the domain handled by the interpreter. When a program
is run by an interpreter that provides reflection, the program has access to its
own text and state, because reflection can provide access to all the information
that the interpreter handles.

In the following diagrams, the boxes represent levels of towers, and the
arrows represent the flow of information between tower levels.

Flat reflection

The simplest form of reflection is portrayed like this:

The interpreter has access to the information that represents the application
(lower arrow) and the application has access to the information representing the
interpreter (upper arrow). The application can get information about itself via
the pair of arrows (drawn with a u-turn just inside the interpreter). Therefore,
program0 •< interpreter0, as well as interpreter0 •< program0.

Tower reflection

In this simple form of reflection, this access goes no further (see section ??).
In the form of reflection investigated in this thesis, called tower reflection, the
program is also given access to its interpreter’s text and state, as well as the
program’s own text and state. This is in the same terms as access to the program
itself, since the interpreter is also a program:

Here, prog0 •< int0, int0 •< prog0, prog1 = int0, and prog1 •< int1, and int1 •< prog1.
This access is modelled by including the program’s interpreter in the rep-

resentation of the program, like this (we are drawing these diagrams with just
single arrows from now onwards, for clearer overall diagrams):

22 CHAPTER 2. INTRODUCTION

Since the interpreter is a program in the same form as the interpreted pro-
gram, and the interpreter of any program may be found from the value repre-
senting the program, an infinite tower of interpreters appears, with information
being passed up and down the tower in stages:

Here, for example, the program (prog0) can get information about its interpreter
(int0) by asking it to ask its interpreter (int1); int1 sees int0 in the context of
being prog1, so the operations required are just the same as in the flat reflection
described above.

This thesis explores tower reflection, in which programming languages and
the components of their implementation are first-class values that programs can
inspect, manipulate and construct.

2.4 Program interpretation

In a conventional interpretive computing system, two programs are running at
once: the application, which is commonly referred to as the program, and often
thought of as the only program active in the system, and the interpreter, which
may be a program or the circuitry and microcode of a computer.

The sense in which both programs are running at once is quite different
from concurrency. Each step taken by the computer advances the state of both
programs, by the same action, in different ways. One action of the computer
has different meanings at the two different levels. Also, a single step at the
application level is the same piece of work as many steps at the level interpreting
it. A familiar analogy to this is found in the action of a digital clock. At 8
seconds past midnight, one tick will change the seconds digit, but nothing else.
The next tick will change that digit again, and also change the tens of seconds
digit. Many ticks later, a single tick will advance both of those, from 5 and
9 to 0 and 0. It will also have a third effect, of advancing the minutes by 1.
Many more ticks later, the tens of minutes will change. . . and after still more
identical ticks, one more tick— itself just the same as all the others—will have
at least seven distinct meanings, including “a new second has begun” and “a
new day has begun”. However, the days are composed of the seconds (and so
decomposable back into seconds), rather than running parallel to the seconds.

Another very relevant point in this analogy is that there are causal relation-
ships between the adjacent digit devices of the clock. “Tens of seconds” changes
only when told to by “Seconds”. In turn it tells “Minutes” to advance at the
proper time.

The metaphysics

The metaphysical aspect, regarded by many authors, including myself, as nec-
essary in work on reflection, in the clock analogy is that the progression of the

2.4. PROGRAM INTERPRETATION 23

digits of the clock does not cause time to advance. Time (an abstract thing)
advances independently of the clock (a concrete thing). The activity of the
clock merely models the progression of time. It does this because we choose
to see the clock as representing the time. The same basic mechanism, with
little modification, could be used to model or represent many other monotonous
processes, such as the progress of a vehicle along the road. Likewise, an inter-
preter is only interpreting something, and an evaluator evaluating something,
because we see it that way. Although this may seem like a frivolous aside, it
is an important part of the background to reflective computation, particularly
to the underlying type theory, which, in describing how a is represented by b
also implies—through the action of an understanding agent—that b means a.
By understanding agent, we mean something that takes in meaning (or projects
meaning onto something), such as a person watching a screen. No meaning
can be given to any of the system if no outside agent projects a meaning onto
it in the terms of its own understanding. This is part of the symbol ground-
ing problem—the ultimate need for a frame of reference that we can take as
absolute2.

This need for an external agent to project meaning onto something which
can then be seen as an agent (but only in the light of that projected meaning) is
examined in more depth and more breadth in section ??. There, and further on
in the thesis, it is shown that the process of projecting meaning onto a process
must itself have meaning projected onto it; and also that several apparently
different forms of the process of projecting meaning onto processes are shown
to be equivalent in both their intensional and extensional expressions. These
parts of the study combine to reflect on the meaning of meaning in the context
of a system that contains causal self-reference, and place that context inside
the context of a system which is observed from the outside. The projection of
meanings within the system, in turn, may be taken to reflect on the inclusion
of that external observer as part of the system. What matters is neither the
number of levels nor the dimensional complexity of the relationships between
them, but the difference between looking inward into the system and outward
from within the system. Looking inward, we can construct a system and move
our attention into it, but looking outward cannot move attention to anything
beyond the boundary of the system.

Program as data

The interpreter handles the text and state of the application as data values. The
text is some representation of the program code, and the state is the variables,
point of execution, and the stack. From the interpreter writer’s point of view,
an application program is a collection of data objects—for example, the text of
the program might be stored as a parse tree, the variables in a hash table and
the stack as a vector, each in a variable of the interpreter—or possibly all in
one variable of a suitable structure (record) type.

2Ceci n’est pas une thèse—c’est seulement une impression d’une thèse. [?]

24 CHAPTER 2. INTRODUCTION

Language as data

From the application writer’s viewpoint a conventional language implementation
is largely a black box providing little scope for adjustment apart from the ex-
tension techniques already mentioned. Although the application program may
occasionally handle values passed to it by the interpreter de profundis (such as
error codes) these values have little significance and is certainly not a formal
model of what the interpreter really is.

For computing about language interpretation, we need to make languages
available in the form of data, as well as presenting programs and their state as
data. Central to this thesis is the development of a suitable representation for
programs in languages, the interpretive closure. In the interpretive closure, the
semantics of the language are defined in two parts: the evaluator, which drives
the interpretation, and the language, which defines all the operators used by the
language. Reflective operators are used in both parts of the language definition.

Evaluator as data

The evaluator of the system is a program, and we represent it in the same way as
any other program, that is, as an interpretive closure. The closure representing
the evaluator, in turn, contains a field for its own evaluator.

2.5 Some related concerns not addressed by this
thesis

This thesis is concerned with manipulating programs dynamically in the form
in which they run. Transformation from input text to this form is considered
static, and is not addressed here. We are not concerned here with the textual
representation of the program or its data—we assume it has already been trans-
formed from its external representation into a form in which it can be handled
readily by an interpreter. Techniques for this are already well-established: for
example, YACC [?] and Lex [?] have been in regular use for a considerable time
now, and much experience of programming them has accumulated. These and
other such tools are regularly used to construct language systems for practical
use, rather than on an experimental scale. Some languages allow new syntax
to be established dynamically, for example by the read table and reader macros
in many dialects of Lisp [?, section 22.1.5]. This is a form of reflection (a Lisp
program can modify the behaviour of the Lisp reader) but it is not reflective
interpretation. It may be taken further by allowing a language to extend its
syntax in other ways [?] [?].

Another form of static manipulation of programs is macro expansion which
is a transformation on program source [?]. Like syntax description, it is an
important part of programming language technology, and can make use of re-
flection, but is outside the scope of this thesis. It can be used together with the

2.6. FORMAL AND INFORMAL REFLECTION 25

developments described here to provide complete language implementations on
a regular framework.

2.6 Formal and informal reflection

Before reflection was developed as a technique in its own right, it appeared in
small ways in many languages, either to provide specific features or to make
the language more flexible. The languages that happen to provide reflection
informally tend to be straightforward and of uncluttered design, with a clear
model for program interpretation, a good example being FORTH [?], a simple
stack-based language that allows the introduction of new operators and new
syntax.

Informal reflection

In some languages there is no clear distinction between the functions that are
part of the interpreter and those that are part of the application. Examples
of these open languages, sometimes described as ball of mud languages, include
FORTH, POP, and many dialects of Lisp [?]. They are noted for the ease with
which other languages can be implemented using them as a base.

There are two ways in which such languages can do reflection:

• parts of the interpreter may be called directly from application programs,
so that they can reflect by carrying the data of the user program into a
running portion of the interpreter;

• the interpreter may call application-supplied routines in the interpreter’s
context through variables often known as hooks, accessible both to the in-
terpreter and to the interpreted program, thus also reflecting user program
data into the running of parts of the interpreter.

Both of these techniques allow application programs access to the internals of
the interpreter, and so perform reflection by accessing both variables of the
interpreter and variables of the application program.

These languages provide an informal form of reflection and reification through
making their interpreter architectures open enough to move things in and out
of them. Although typically they provide little systematic support for handling
programs as data, they are flexible, and provide ready interchange between
the parts of the system that are manipulated and those that manipulate other
parts. These language facilities have helped to show the usefulness of reflective
language features.

Formal reflection

In an explicitly reflective system, the relationship between application and inter-
preter is clearly defined and symmetrical. The application program can inspect

26 CHAPTER 2. INTRODUCTION

and modify the internals of the system just as the interpreter can. This access
is provided by the language implementation, which includes in the language the
necessary facilities:

• reifiers, which are functions returning, as results, values from within the
interpreter

• reflectors, which install data values, given as arguments, into the inter-
preter.

This allows an application program to add features to the language or to alter
the way programs are executed. A consequence is that an application program
can build a new language interpreter on a plain language base, installing each
new feature in turn by reflecting it into the interpreter. Used in conjunction
with syntax descriptions for parser generation, this provides a way to add a
language or language features to a system, as an ordinary program rather than
as a special modification to the system. Thus language and interpreter design
and implementation slough off their black box status and take on the mantle of
conventional programming techniques.

Through these facilities, programs have access to the computational model
of their language implementation. To make proper use of this, the language
should also have operations on the data types used by the model to represent
interpretation, such as the insertion of new features into an interpreter, and the
composition of two interpreters to provide the special facilities of both—such as
tracing from one and lazy evaluation from another.

2.7 Reflection and reification in normal program
execution

Reflective actions are also useful in the ordinary functioning of programming
languages. Many languages have operations which implicitly perform a limited
form of reification or reflection. For example, there may be an operation for
remembering a particular point in the program as it is executed, and reverting
to it dynamically from anywhere within the dynamic extent of that point in the
program (that is, until the procedure containing that point has been returned
from). In C [?, section 4.6] the reifier for this is

place: jmpbuf = setjmp ();

which stores that point of execution in the variable jmpbuf. The point is stored
as a structure containing the address in the program of place and the end
address of the stack at that time. This reified value can then be passed around by
the application, and eventually reflected back into the execution state, causing
execution to continue at place again, by

longjmp(jmpbuf);

2.8. KINDS OF REFLECTION 27

C provides simple handling of functions as values, by allowing pointers
to functions to be stored in variables. This provides a static form of ac-
cess to the program. Another reifier found in C is the stdarg system (or
vararg in some versions) [?, section 4.8], in which successive arguments to
the current procedure call, which are components of the execution state, are
extracted for use in application expressions. The program can start reading
its arguments using va_start(pvar); and then read successive arguments us-
ing f = va_arg(pvar, type); and finish reading them by va_end(pvar);. In
vararg, the C program is using a library to handle parts of the C system, just
as it might use libraries to handle, for example, graphical output.

Another example of a way in which an application program could use reflec-
tion is the dynamic installation of tracing facilities in the interpreter to show
the user what the program is doing. This is done without modifying the parts of
the program under inspection. Likewise, an application can change its own eval-
uation from applicative order to normal order without modifying the program.
The system described here is capable of considerably more radical reflective op-
erations, including doing either of the above with modifying neither the program
nor the language.

All features of a programming language interpreter may be programmed
reflectively. In a reflective system, the code which implements any language
feature used by a program may as well be in that program as in the language
implementation. Taking this a step further, we can arrange for a program to
implement a language. Initially, the program must run in another language,
but as it installs parts of the new language, it can begin to use those parts.
(Requirements for the minimal initial language are explored, as the “Tiling
Game”, in [?].) This is a straightforward and natural way to define a language.

2.8 Kinds of reflection

As mentioned in section ??, There are two main forms of reflection: flat reflec-
tion, in which the application has access to its own code and state; and tower
reflection, in which it also has access to its interpreter’s code and state, and its
interpreter’s interpreter’s code and state, and so on. Flat reflection is sufficient
for such operations as the non-local jump described in section ??, but it does
not provide the facility to inspect and modify language features.

It is possible to provide a program with some access to its own inter-
preter without using a tower [?]—that is, to just one interpreter, which runs
conventionally—but this is not a regular structure and does little to model how
an interpreter works. The weakness in this results from the lack of a consistent
model for interpretation, that is, from its interpreter being an ad-hoc program
rather than having the regular structure that is imposed by a tower of levels.
In terms of our earlier analogy of the digits of a digital clock (in section ??), it
explains the hours in terms of the minutes alone, but does not make the con-
ceptual jump of generalization necessary to explain that hours are related to
minutes as minutes are to seconds, and so cannot capture the principle behind

28 CHAPTER 2. INTRODUCTION

such a clock.
Thus, flat reflective systems are suitable for implementing reflection, but not

for explaining it in all its splendour.

Flat reflection—program and state as data

Reifiers and reflectors for the application program to access its own text and
state are simple to write into an interpreter. They access the interpreter’s
own variables. For example, the current execution point (such as the program
counter, in a machine-code system) of the application will typically be kept in
a variable of the interpreter. The interpreter can provide a language operation,
available to application programs, to place this value in the result of the opera-
tion that it interprets, and another operation to set it from a value given as an
argument to the operation.

Because the action of the interpreter causes action in the application pro-
gram, when the application changes part of the state of the interpreter, it causes
a change in its own state or behaviour. Through this causality, these reflective
operations provide, in this example, a simple label and jump facility. This is not
unusual: what is unusual is its provision through an abstract model of how a
program is interpreted. Through the reifier and reflector functions the applica-
tion program can add a jump facility to the language itself that was not initially
present in the language. This cannot be done with non-reflective languages.

2.9 Introducing the tower

The reifiers and reflectors of a simple reflective system provide means for a
program to access its own text and state. This is not sufficient for work on a
reflective tower. To access anything beyond the program itself, the program
must also have access to its interpreter’s text and state, which can be done as
already shown in the diagrams of section ??.

As with flat reflection, the data must be handled by the interpreter on behalf
of the application—but how is the interpreter to handle this data? This data
is part of the interpreter, not part of the program it interprets, and so the
interpreter cannot provide it in the same way that it provides data on the
application that it is evaluating. The explanation of how this facet of the tower
works depends on the continuing repetitive nature of the tower itself, and the
ability to pass data from level to level to level, as detailed below.

Tower reflection—evaluator and evaluation as data

A solution to this is to model the interpreter as the application run by another
interpreter, using reification and reflection provided by the second interpreter
to access the text and state of the first interpreter on its behalf. (This is shown
in the diagrams in section ??) In turn, the second interpreter needs a third
interpreter to obtain access to itself, and so forth. Hence, an infinite tower of

2.9. INTRODUCING THE TOWER 29

levels of interpretation appears, in which access to each interpreter is provided
by the interpreter that implements it—that is to say, the one above it.3

There are infinitely many levels in the tower, each of which runs an evaluator.
This series is infinite because each evaluator must be run by another evaluator.
Using this model, we conceal any mechanism outside the tower (such as a real
computer), and so can use the same model to explain the whole system. We
call this mechanism the meta-evaluator or, for reasons explained in section ??,
the umbrella, of the tower. [?] calls this the ultimate machine, a term which
we do not use here because in our system, there is no ultimate machine—it is
possible to go behind the meta-evaluator, as explained in section ??, which also
explains the extension of these concealment techniques to handle the necessary
processing outside the tower that makes the tower work.

Continuing our use of locative terms (such as above in the tower), the ge-
ometry of this concealment is that such a mechanism (the real computer) is
alongside rather than above the evaluator that is above the application.

However, it must also be above the evaluator, to be in a position to interpret
it—where Smith describes it as the ‘ultimate machine’:

We resolve this by placing it both beside the tower, because tower levels only
look up and down, not to the side, and infinitely far up the tower by inserting
infinitely many levels between this real evaluator and the application.

A result of this is that however far along the tower the application looks
through reification, it can never see this infinitely distant non-reifiable evaluator.
Neither can it see it beside any level (because there is no means for looking in
that direction). Thus, it is equally invisible in both directions, and so from the
application’s viewpoint these positions are equivalent. On the other hand, the
evaluator beside the tower can see beside (or below–see in the diagram that they
are perpendicular) itself, to the tower, and so can make the tower work.

Meta-circular evaluators - towers without stairways

Before the reflective tower was invented (or discovered), the concept of the
meta-circular evaluator was used already to explain languages. A meta-circular
evaluator is one written in the language that it interprets, and therefore capable
of interpreting a copy of itself. As this was devised with no formal concept of
reflection, it requires extensional operators (see section ??) for its implementa-
tion. Reflective operators can achieve the same ends as extensional operators
but in the context of a consistent framework. For example, the implementation
of a conditional statement by the first evaluator (let us call it e1) requires a
conditional statement in e1—which requires the next evaluator e2 to implement
a conditional statement, which means that e2 requires a conditional statement

3By convention [?] we say a level is interpreted by the level above it.

30 CHAPTER 2. INTRODUCTION

in its text, which must be implemented in e3 (the next evaluator) and so on.
Alternatively, an extensional conditional, grounded outside this evaluator chain,
may be used.

Of course, in a real implementation there must be an evaluator that provides
these extensional operators. However, the real evaluator can be hidden away as
it replaces exactly an infinitely recursive definition of the intensional one:

Here, a definition in the meta-evaluator is just one procedure, whereas the defi-
nition of the same procedure within the tower is an infinite series of procedures.
The key to reflective interpretation is the link between the infinite series within
the tower and the finite definition in the meta-evaluator.

It is possible for the finite real evaluator to replace exactly an infinite tower
of evaluators because an application which terminates (that is, runs in a finite
time) can only reify a finite amount of the infinite tower. Thus, the finite im-
plementation of the tower can always instantiate enough of the infinite abstract
tower to satisfy the reifying demands of any finite application. Any application
which examined or processed an infinite amount of tower could not terminate
anyway.

One of the keys to understanding the reflective tower model is to be found in
understanding this implication of the finiteness of applications. Consideration
of the abstract types involved is also very helpful in gaining this understanding.
The types are described in chapter ??, but before then we describe the overall
system of which the types are part.

2.10 Central points of this thesis

This thesis introduces several new ideas, and develops further some existing
ones, which are also central to this work. The main points are introduced
briefly below:

• reified evaluators, as introduced by [?], are developed from an ad-hoc
procedure to one parameterized by a language parameter, which provides
the means for:

– mixed-language program execution, in which procedures in different
languages may call each other as though all in one language; and for

– language-as-data—a step beyond Lisp’s program-as-data—in which
we also use...

– reflective tower evaluation—also introduced by [?]—which is an ex-
tension of meta-circular evaluation, and allows fundamental control
structures, such as if, to be defined by procedures at the user pro-
gram level; an extension to this is...

– meta-tower evaluation, which brings the tower implementation—prev-
iously backstage—inside the tower, and does for tower evaluation

2.11. SUMMARY OF INTRODUCTION 31

what tower evaluation does for evaluation, allowing the tower imple-
mentation to be defined at the user program level;

– re-use of the idea of meta-tower evaluation shows that it does the
same for meta-tower evaluation as it does for tower evaluation and
for evaluation, and so may be seen as a fixed-point from which to
construct any of these forms of evaluator.

• shadowing, a technique necessary in all reflective interpretation systems,
by which a procedure outside the tower stands in for an infinite series of
procedures within the tower, is treated more systematically than before,
and it is made reifiable, and

– the similarity between (reified) shadowing and (reified) languages is
made apparent, leading to the development of...

– a pair of very simple procedures, for use as the basis of an evaluator
and of a meta-tower evaluator respectively.

Using these ideas, an implementation of a mixed-language meta-tower, called
Platypus, is constructed, and shows itself to be passably efficient compared with
conventional evaluator systems.

2.11 Summary of introduction

Reflective techniques are based on two facilities: reification, by which a program
may examine its own code, state and interpreter; and reflection, by which it may
modify any of these. The connection that reflection makes between a programs
actions and its behaviour is causal in nature: modifications that a program
makes to its interpreter may cause changes in the way that the program is
interpreted.

Some programming languages, not normally regarded as reflective, provide
a limited range of reflective operations, such as access to the parameter list of a
procedure call. However, in a fully reflective program interpretation system, all
the features of any programming language can be implemented through reflec-
tive programming in the program, thus removing the distinguished status from
the interpreter of a language, and making it equivalent to any other program in
the system.

There are two kinds of reflection: simple reflection and tower reflection.
Simple reflection provides a program with access to its own code and state
and interpreter. Tower reflection also provides it with access to its means of
interpretation—that is, the mechanism by which a program is related to its
interpreter, and thence to its interpreter’s interpreter, and so forth. Tower
reflection is more general, and, not having an arbitrary stop after the first level,
is a more regular conceptual structure. Thus it is a more powerful tool for
reasoning about intensional reflection and about interpretation.

Although tower reflection deals with infinite structures, it is possible to im-
plement it with finite constructions. This thesis explores the infinite towers and

32 CHAPTER 2. INTRODUCTION

their finite implementations, and investigates whether an interpretive program-
ming system built this way can be made reasonably efficient, compared with
conventional, non-reflective interpreters.

In this thesis, we develop a reflective tower implementation, called Platypus,
and use it to demonstrate many of the points discussed.

“Oh, what fun it’ll be, when they see me through the glass in here, and
ca’n’t get at me.”

Alice, Looking Glass, Chapter 1

Chapter 3

The Closure—a building
block for computation

Adding reflection and reification to a meta-circular evaluator can make it a
more useful tool (or model) for describing the language it implements, but does
not add to our ability to handle programming languages in general. We need to
make the language an explicit parameter of each level of evaluation, and provide
each level with access to its language. Consequently:

• successive levels of the tower can be implemented in different languages,
and each tower level must store which language it is in, and

• there must be types and operations concerning all the parts of a language
implementation, and that these must be the same for the components of
all languages, so that we have a single way of describing any level of the
tower.

In making the language an explicit part of each level, and thus in letting it
vary from level to level, we must ensure that there are compatible data repre-
sentations throughout the system, so that values may be passed freely between
languages and between levels. The requirement is not that all levels must have
the same representation system, but that adjacent levels must be able to trans-
late information from one representation to another so that they can transfer
data between them. This is normally met by the reifiers and reflectors trans-
lating the data between the different representations, as discussed further in
section ??.

The availability of data produced by reifying levels, and the consequent
possibility of levels passing levels as data to each other, requires that the repre-
sentation of levels also be compatible at all levels.

33

34CHAPTER 3. THE CLOSURE—A BUILDING BLOCK FOR COMPUTATION

3.1 Representing computation as data

In order to handle parts of a computing system as data, we need a data type
for representing parts of a computation. The computation is something active,
and its activities may be prescribed procedurally. However, such procedural
descriptions are static, and do not represent the actual computation. Compu-
tation must be represented with a combination of its (procedural) prescription
and a snapshot of its state at some particular time—which part of the proce-
dural prescription it was executing, and on what data. It is important that the
representation used:

• is at the right level of granularity, that is, represents the right amount of
a computation in each unit

• holds its piece of computation in a form appropriate both for manipulation
and for execution

Closures

Since the components of program texts are procedures (see the note on proce-
dures and functions in section ??), and the components of program states are
the states of individual procedures being evaluated, we will use a type com-
bining them, the closure of a procedure (see section ??) as our basic type for
describing tower objects.

A closure closes over the code and state of a procedure, making procedures
into self-contained values that can be passed around complete with the state
that they need. For convenience, we split the state into two parts, local and
non-local, so the closures used here have three components representing the
state of a procedure:

• the expression of the closure, which represents the text (or body) of a
procedure

• the value-list, which contains the arguments when the procedure is
called, private internal state while it is being evaluated, and the results as
they are prepared to be returned to the caller;

• the environment, which holds all non-local variables accessible to the
closure, bound in other closures (called lexical or free variables).

The expression of a closure we represent as a ‘parse tree’ of the procedure text
it represents. Each node of the tree has as its first sub-expression a node type
(which we call its operator) and possibly some other sub-expressions, which are
taken as arguments to the operator. For example, a+b has the operator + and
the sub-expressions a and b. This representation is used for all programming
languages in this system. Although the system we build does not make this
form of expression a strict requirement, in practice we have found no need for
other representations.

3.1. REPRESENTING COMPUTATION AS DATA 35

In fact there are two parts to the expression of a closure: the procedure
expression and the continuation expression. The procedure expression is the
whole body of the procedure, and the continuation expression is the sub-tree of
the procedure that is currently being executed. (At any point, a frozen state of
computation may be continued from its continuation.)

The reason for this is that we need to know at all times both the current
point of computation, and the whole definition of the procedure. As the continu-
ation expression moves inward down the expression tree, we need the procedure
expression for reifiers to find what the original procedure was. If we were to
have only one expression in each closure, it would not be possible to return
to the evaluation of an outer expression on finishing evaluating an inner one,
except by storing the information in the next level above in the tower—which,
although convenient for interpretation (because it is part of the state of that in-
terpreter), is inappropriate for reification, because that is not the level to which
belongs. For example, when in evaluating (lambda (a b c) (* (+ b c) a))
the evaluator is at (+ b c), the (* ? a) must be stored ready to be resumed
when (+ b c) has been evaluated. It would also make it impossible to make
procedure calls (or even expression evaluations) that do not start new instances
of the interpreter’s context.

This part of the model of execution is analogous to that of compiled code
in many conventional systems. Each call level has a stack frame, in which
are (or may be) stored pointers to the local variables used, the environment
active at that point, a pointer to the start of the procedure, and a current
execution pointer for the procedure (the return address for the unreturned call
it is making).

The interpreter uses the operator of the continuation expression to choose
what to do at each step of interpreting a closure. For example, in a+b, it
might evaluate each of a and b, sum their results, and return that value to
the surrounding expression. The operator is all the information the interpreter
needs to decide how to select what to do at that node.

The classification of variables into two kinds formalizes the common practice
in language implementation, while also providing purely positional parameter
passing—that is, without needing common knowledge of variable or parameter
names between caller and callee—which is necessary for referential transparency
(see section ??).

The value list corresponds to the stack frame or activation record of common
practice, and shared between call levels within an evaluation level, and the
environment is equivalent to the display of languages such as Pascal.

The value list as we use it takes the form of an open stack. Each procedure
may add or remove things at the end of it, and access items by indexing into
the stack from the end. Before calling another procedure, a procedure making
a call pushes the call arguments onto the end of the value list. The callee will
then be able to use them as its arguments, and also use the same locations and
any that it may add beyond them for its own local state (workspace). Before

36CHAPTER 3. THE CLOSURE—A BUILDING BLOCK FOR COMPUTATION

returning, it will pop its workspace and arguments, and push its results, if any,
where the arguments and workspace were.

This form of stack is compatible between languages with an explicitly open
stack, such as FORTH and PostScript, and those with closed stack frames, such
as Lisp and Algol. With such a stack, cross-calling between these kinds of
languages is automatically available.

As well as being used as a Lisp-style environment or a Pascal-style display,
the environment may be used to hold unification variables for languages such
as Prolog. This allows variable bindings, made by other languages, to appear
as instantiations (unification bindings, or substitutions), and allows unification
bindings to appear as ordinary variables when a procedure in a unification lan-
guage calls one written in a non-unification language.

Here is a Lisp definition of a closure, which will be used in example code
later:

(defstruct closure

;; a function to interpret the closure:

(interpreter (type closure))

;; a Lisp s-expression:

procedure-expression

continuation-expression

;; arguments, workspace, result:

(values (type vector))

;; an alist or hash-table: , perhaps?

(environment (type lookup)))

The nature of the interpreter field of the closure is described in section ??.
Here, we just show it as a closure, but in fact it contains several other compo-
nents.

3.2 Including the language in the closure

The introduction of mixed languages to a reflective architecture, and with it the
idea of programming languages as values, adds a new requirement to the closure
operation. As well as the procedure texts and states, closures must close over
the language in which that text is to be interpreted. Commonly, a program text
is written on the assumption that it is to be interpreted as a program in just
one specific language, and so it is generally reasonable to say that a program
is in (or for) a particular language. However, the language is just part of the
context—it is the semantic, or linguistic, context—within which the program
is be evaluated, and so could vary, just as the value context provided by the
lexical and dynamic environments may vary. For most purposes, though, it is
appropriate to close the text and the language together, so that wherever the
text is seen, the associated language is made available with it. Therefore, we
may say “the language in which an expression is written”.

3.3. THE RELATIONSHIPS BETWEEN LEVELS 37

There are several places at which the language could be specified in rep-
resenting programming systems. Attaching a language to each procedure (as
part of the closure of that procedure) allows procedures at the same level of
interpretation to be written in different languages, which is what is required for
normal mixed-language programming as mentioned in section 1.6.

Two effects of closing the language into the procedure representation are
that:

• closures are independent of external language information, and so are of
the same form for all languages. As a consequence of this, we can make
procedure calls between any two languages as easily as we can within one
language.

• the closure indicates in which language its expression is written. This
information is needed for interpreting programs in a mixture of languages.

Representing languages as data values

To evaluate a closure, we use the language interpreter which is a component of
the closure. This interpreter is itself a procedure (stored as another closure),
and takes the other parts of the interpreted closure as its arguments:

(defun eval-closure-0 (closure)

(funcall ; to evaluate a closure,

(closure-interpreter closure) ; call its interpreter

(closure-procedure-expression closure) ; with the expression,

(closure-continuation-expression closure) ; values, and

(closure-values closure) ; environment

(closure-environment closure))) ; as arguments

but, for orthogonality and for convenience in reification and reflection, we make
it take one argument, namely the closure in which it occurs:

(defun eval-closure-1 (closure)

(funcall ; to interpret a closure, call

(closure-interpreter closure) ; its interpreter, with the

closure)) ; closure as argument

Since the interpreter of a closure is itself a procedure (represented as a closure)
this evaluation goes infinitely high up the tower, and we see a tower of active
closures forming, rather like a tower of meta-circular interpreters.

3.3 The relationships between levels

There is a simple set of rules describing how adjacent levels of a tower are
connected, and how the rules for adjacent levels can be extended transitively to

38CHAPTER 3. THE CLOSURE—A BUILDING BLOCK FOR COMPUTATION

longer strings of levels.
Unlike a meta-circular interpreter ia that must always be interpreted by an

interpreter ib such that (using the notation introduced in section ??)

(ia → ib) ∧ (ia ≡ ib) (3.1)

our neighbouring interpreters are allowed to be different:

ia 6= ib (3.2)

while still requiring
ia → ib (3.3)

Each interpreter also provides means to pass information between its own closure
and the one it interprets, (ia •<ib as well as ib •<ia—the latter is always the case),
so we have a reflective tower, where each closure is provided (by its interpreter)
with access to itself:

(ia •<ib) ∧ (3.4)
((ix •<iy) ∧ (iy •<iz) ⇒ (ix •<iz))

⇒ (ib •<ia)

and (by its interpreter’s interpreter and through its own interpreter) to its inter-
preter’s closure

(ib •<ia) ∧ (3.5)
(ic •<ib) ∧

((ix •<iy) ∧ (iy •<iz) ⇒ (ix •<iz)) ∧
(ib •<ic) ⇒ (ia •<ib)

Thus, the ability of a closure to receive access to itself depends on the clo-
sure’s interpreter; and, in turn, that interpreter can only have access to itself if
its interpreter provides reification.

3.4 Procedure calling using closures

Before looking at how this tower is held together, we must understand how a
procedure is called using these closures. There are two ways of doing this:

• the same instance of the interpreter can itself handle the interpretation of
the called procedure, (a non-reflective call)

• or the interpreter can recurse to make and call another instance of the
interpreter to interpret the called procedure (a reflective call).

In the first form of procedure call, to interpret a call of a procedure directly,
the interpreter must do the following actions:

3.4. PROCEDURE CALLING USING CLOSURES 39

• Take a copy of the closure of the procedure

• extend its values with the arguments to the call.

• Save on the stack the continuation of the calling procedure—which was
the currently active closure in its level

• Continue interpreting, with the copy of the called procedure as the current
closure being run by the interpreter. This closure has had its value list
filled in, thus supplying it with its arguments.

In the second form of procedure call, the interpreter may itself recurse to make
the new stack frame, thereby making its interpreter hold the saved continuations,
which it must do in the manner described above—or, in turn, by making the
next interpreter hold the previous continuations. . .—and that may in turn make
another interpreter hold the previous continuations, and so forth. The second
method is particularly appropriate for interpreting a language where all calls
are reflective, as the whole closure is always the object passed around.

However, this makes it impossible to make non-reflective calls, which is un-
fortunate, because reflection into a interpretation of a level no longer has the
desired effect; instead, we would just reflect into the interpretation of a proce-
dure, and the effects of the reflection would be lost when the procedure returns.
So, we choose the first method for normal procedure calls. These two forms of
procedure call are covered in more detail in section ??.

Interpretation of a procedure works by recursive descent of the procedure’s
expression tree. At each node of the tree, the node’s operator directs the inter-
preter how to handle that node.

For example, an operators for flow control, such as if, may call the inter-
preter explicitly to implement that flow control, using its own flow control to
decide when to call the interpreter: so to interpret

if a then b else c

we can use

(defun if (closure)

(let ((expr (closure-continuation-expression closure)))

(if (interpret (first expr) closure)

(interpret (second expr) closure)

(interpret (third expr) closure))))

An operator which does no flow control, which we sometimes refer to as a Lisp-
like operator, as it is similar to a Lisp procedure in the way that its argument
sub-expressions may be evaluated, may evaluate its sub-expressions in an arbi-
trary order. An example is:

40CHAPTER 3. THE CLOSURE—A BUILDING BLOCK FOR COMPUTATION

(+ a b c d ...)

The simple applicative order version shown here evaluates them from left to
right, using the reduce procedure of Lisp [?, Section 14.2], which applies a
given procedure taking two arguments to each element of a sequence and an
accumulating result:

(defun add (closure)

(reduce #’+

(map ’vector

#’(lambda (expr)

(interpret expr closure))

(tail (closure-continuation-expression closure)))))

The definition of each operator is a closure a procedure which, when applied
to a closure, interprets it in the appropriate way. Operators are done this way
to facilitate language definitions and mixed language working, as explained in
section ??.

Active and inactive closures

The call stack of each level is made of a sequence of closures each representing
an active instance of a procedure. A program is stored as a collection of inactive
closures waiting to be copied. When a procedure is called, its inactive closure is
copied onto the call stack to make an active one, much as the calling mechanism
of a conventional interpreter builds a stack frame for the procedure being called.
Pointers are stored in the stack frame to point to the previous stack frame, to
the procedure body (code), and to the static or constant data needed by the
procedure; the variables provided by the procedure will also be linked into the
environment.

Whenever a procedure is called non-reflectively, its closure is instantiated,
the value list of the new copy filled in with the call arguments, and the closure
placed on the stack of the bottom level of the tower, where it becomes the
current closure. This creates a new activation record within the bottom level of
the tower, but does not add a new level to the tower.

When a procedure is called reflectively, a copy of the interpreter of that
procedure’s closure is taken, with the closure as the interpreter’s argument.
The copy of the interpreter is installed just above the bottom of the tower,
where it runs a new level of the tower.

Since in either form of call, the closure is placed in the tower, the tower
always provides the context for evaluating the closure.

3.5. SUMMARY OF CLOSURES 41

3.5 Summary of closures

At each level in our infinite tower, there are one or more procedures, of which
at any one time one will be active, and some (possibly none) will be on a list of
saved procedure evaluations to be returned to.

In common with many other language systems, we represent procedures by
closures, each containing the code of the procedure and any context that must
be carried with that code to interpret it.

To make explicit the interpreter of a procedure, we close over the interpreter
when constructing the closure of the procedure, and thence the rest of the tower
of which that evaluator is the lower end, thus making it contain the whole of
the context in which the procedure is interpreted.

A closure constructed this way we call an interpretive closure, since it en-
closes all the information needed for interpreting a procedure.

We use interpretive closures as the building block for constructing reflective
interpretive towers. Each level of a tower contains a closure (actually, a stack (or
list) of closures). The interpreter of an interpretive closure is also an interpre-
tive closure, as are the operator definitions. Closures are also used to represent
procedures available for calling. When a procedure is called, its closure is in-
stantiated by copying in onto the top of the stack, and filling in fields that come
from other parts of the level and the tower (such as the dynamic environment
within which it was called.)

And the whole earth was of one language, and of one speech. And it
came to pass, as they journeyed from the east, that they found a plain

in the land of Shinar; and they dwelt there. And they said one to
another, Go to, let us make brick, and burn them throughly. And they
had brick for stone, and slime had they for mortar. And they said, Go

to, let us build us a city and a tower, whose top may reach unto heaven;
and let us make us a name, lest we be scattered abroad upon the face of

the whole earth.
And the Lord came down to see the city and the tower, which the

children of men builded. And the Lord said, Behold, the people is one,
and they have all one language; and this they begin to do: and now

nothing will be restrained from them, which they have imagined to do.
Go to, let us go down, and there confound their language, that they

may not understand one another’s speech. So the Lord scattered them
abroad from thence upon the face of all the earth: and they left off to

build the city. Therefore is the name of it called Babel; because the
Lord did there confound the language of all the earth; and from thence

did the Lord scatter them abroad upon the face of all the earth.

Genesis 11:1-9

42CHAPTER 3. THE CLOSURE—A BUILDING BLOCK FOR COMPUTATION

Chapter 4

How the tower levels are
linked together.

The relationships between adjacent levels of a tower are as important as the
contents of each level. Having examined the closures that are used to make up
each tower level, we now look at how they fit together to make a tower, and how
that infinite tower is linked to a meta-evaluator so that it may be interpreted
in finite time.

4.1 Levels, strings of levels, and towers

A tower is made up of a sequence of levels, but not every sequence of levels is a
tower. We will call a sequence of levels a string of levels, and here explain some
of the properties of these strings.

A tower is a string of levels that has an application (bottom end) that
is not an interpreter—that is, does not take another program as its subject
and evaluate the result of that program. A grounded interpreter (one whose
computation is known to take a finite number of steps, as explained on page ??)
at the top is not necessary for it to be a tower.

A string is at the bottom of the tower if its lower end interprets an applica-
tion. Since this application may be another interpreter, the same string could
be in a longer tower, not at the bottom of it. The lower limit of the tower
is defined by what we consider to be an interpreter: at a more abstract level
than computer science, we may in some cases consider the application program
to be the interpreter of something in the world outside the computer; indeed,
one possible view is that the observer of the system may be seen as a tower of
meaning, in a morphic mirror image of the reflective tower. (This is one of the
possibilities available through co-tower relations, as described in section ??.)

43

44CHAPTER 4. HOW THE TOWER LEVELS ARE LINKED TOGETHER.

A string interprets the closure applied to its lower end. In turn a string must be
interpreted by a closure to which its upper end is applied. Thus, a string of in-
terpreter levels is equivalent to an interpreter level: it interprets something, and
is itself interpreted by something. The interpreters in the string are function-
ally composed, making what is intensionally a string of interpreters into what is
extensionally a single interpreter.

We say that a string (or a level) is grounded if it interprets a terminating
application applied to its lower end in finite time. In the formulae below, levels
which are known to be grounded are written suffixed thus:

LGi

where G indicates that L is grounded. i indicates which level L is in its string,
with level 0 being the application, and level numbering increasing toward the top
of the string, such that LG1 is the interpreter of LG0 and LG2 is the interpreter
of LG1.

4.2 Links in each direction

Reification and reflection are complementary operations, reflection moving in-
formation up the tower from LG1 to LG2 into the level interpreting the level
providing the data, and reification moving data down the tower, from LG1 to
LG0, from interpreter to interpreted. This implies that both interpreter and
interpreted can access each other. Formulae (given in section ??) explain the
relationship between levels in terms of this knowledge of neighbouring levels.
To use these paths to move up and down the tower, links must be present in
both directions:

• The link for reflection The link through which reflection occurs is that
from a level to its interpreter, that is, to the closure interpreting this
level’s closure. This link is part of the structure of each closure, whether
or not it represents an interpreter. The link is established for each active
instance of each function as the function’s closure is copied onto the stack
for execution.

• The link for reification The link through which reification occurs is es-
tablished through the argument it is given when it is called. When the
interpreter is called, its closure is instantiated on the tower, and the clo-
sure that it is to interpret is written into the first argument position of
the interpreter’s closure. Thus, this link is set up implicitly by the re-
flective calling mechanism. It is present only in closures that represent
interpreters.

This link is in a fixed place in any closure that is an interpreter: it is the
first argument of the closure. (However, not every closure with a level as
its first argument is an interpreter!)

4.3. THE UMBRELLA OF THE TOWER. 45

These two links form a protocol that is observed throughout the tower.
This is important not only dynamically, in the execution of a tower, but also
statically or structurally, for inspecting and modifying the tower, allowing any
level to perform the same operations on all the levels to which it has access.

Links always occurring together

Since both links are set up by parts of the calling mechanism, they always occur
in pairs:

• every closure must have an interpreter to be interpretable;

• each interpreter in the tower must have something to interpret.

The application level is the only level that has no level below it for it to interpret;
whilst the tower stretches up infinitely from the application level.

These links make a two-way chain throughout the tower, so any interpreter
in the tower can access the application, although normally only the last in-
terpreter should do this, and the application can access any interpreter in the
tower, although it will usually only need to access the nearer ones, and (pro-
vided it terminates) will never access those infinitely far from it, as explained
in section ??.

Rolling up the infinite string for storage

Although the tower is infinite, it may be represented finitely, because its in-
finitely long upper initial string consists of identical successive levels (or iden-
tical strings of levels). In Smith’s work, such levels are termed boring [?]. This
repetitive string may be stored as a circular structure, in which those levels are
not only equivalent but actually the very same level. A hidden mechanism, to
be explained in section ??, separates off copies of this level (or these levels)
when they have to be changed, rather like printing off copies of a pattern from
an inked roller:

As the levels produced this way are copies of the original, any of them can be
changed without affecting either each other or the original.

4.3 The umbrella of the tower.

Since a tower is an infinite structure, any computation involving all levels of it
cannot terminate. In particular, as each level is interpreted by the level above
it, we can never find a level that can be executed non-reflectively. So, from
a traditional computability viewpoint, a program represented as the base of
an infinite tower could not be executed were it not for that we can rely on the
application terminating. If it terminates, it can have reified only a finite amount

46CHAPTER 4. HOW THE TOWER LEVELS ARE LINKED TOGETHER.

of the tower. If it does not terminate, we cannot tell whether it requires infinite
amounts of reified tower, and so it only matters that we can realize (that is,
convert into a form that really occupies storage, as described in section ??) an
arbitrary but finite number of levels.

A special interpreter can be constructed using this fact. It takes the place
of an infinite amount of the tower (the boring part), and is always just above
the highest level that has been touched by reification or reflection. Because it is
always at the top of the tower, we call this interpreter an Umbrella. Umbrella
interpreters are explained further in section ??.

4.4 Tower computability; propagation; integrity

This section shows how a tower that is apparently infinite can be evaluated in
a finite number of steps. We look at the complexity of each action at different
levels that it involves, and then procede to remove factors from the complexity
by introducing interpreters that absorb (or collapse) level shifts. Since adding a
level of interpretation multiplies the complexity of an action, absorbing a level
removes the multiplying factor that that level introduced.

From this, we see that the ability to absorb an infinite number of unwanted
multiplying factors (by collapsing the levels at the top of the tower) allows us to
prevent the infinite prolongation of calculation caused by tower interpretation.

Relative computability

We have shown that a terminating application in an infinite tower in one sense
can be computed, because the infinite part of the computation must be col-
lapsable into a finite computation for any terminating application, and in an-
other sense cannot terminate, because the computation happens at an infinite
number of levels. We wish to resolve this paradoxical situation, and so we
develop a theory of computability for interpretive towers.

The conventional idea of computability, in the sense of what can be computed
by a universal machine such as a Turing Machine, is not sufficient to describe
this, as it works only in terms of absolute computability. We must use relative
computability to describe what the lower end of a string of levels can interpret
if its upper end is given an interpretation. In terms of Turing’s work [?], this
is called oracular computability, because something can be computed if the
information on which that computation depends is given by some oracle. In a
reflective system this information includes the computation process itself as a
data value.

Using relative computability, we can describe what effects a string of levels
may have on computability when it is inserted between an interpreter and a
procedure that is interpreted.

4.4. TOWER COMPUTABILITY; PROPAGATION; INTEGRITY 47

Relative computability—quantitatively

What rules for computability hold in a infinite interpretive tower? Let us take
an interpreter LGx which if used to interpret a terminating application ax thus:

LGx(ax(inputx)) (4.1)

will calculate it in a finite number of steps of a grounded interpreter LGx. LGx is
itself represented as a closure, and so tells us what interpreter to use to interpret
it, which we will callLG(x+1). This lets us use it as the application of another
interpreter in a meta-circular interpretation chain:

LG(x+1)(LGx(ax(input))) (4.2)

where LGx ≡ LG(x+1) This is now also calculable in a finite number of steps,
since, if, z terminates, LGx(z) terminates.

But since LG(x+1) is a closure, it must be interpreted, by some grounded
interpreter (either meta-circularly or by some other one):

LGy(LG(x+1)(LGx(ax(input)))) (4.3)

where LGy
?= LGx (where a

?= b reads as “a may or may not equal b”) and this
continues infinitely, making our terminating program ax terminate at each of a
finite number of levels, but take infinitely many steps of an interpreter which is
infinitely far up the tower.

Can we force this computation to become absolutely finite? Using the nota-
tion introduced in section ??, we can calculate how many steps are involved in
working a calculation through two levels of interpretation:

LGy
a→LGx

b→ ax ⇒ LGy
ab→ ax (4.4)

If we have an interpreter LGz capable of interpreting two tower levels at
once, we can do

LGz
e→ ay (4.5)

and also
LGz

f→ az (4.6)

Now let the application ay in the first of the pair of formulae above be an
interpreter LGv which interprets the second application az in g steps:

LGv
g→ az (4.7)

Substituting ay for LGv:
ay

g→ az (4.8)

and showing both stages of the calculation of the number of steps

LGz
e→ ay

g→ az (4.9)

48CHAPTER 4. HOW THE TOWER LEVELS ARE LINKED TOGETHER.

shows us that LGz can interpret az in eg steps

LGz
eg→ az (4.10)

However, from formula ?? above, we know that LGz
f→ az, and thence f =

eg. Thus, through the use of an interpreter that can take on two levels of
interpretation at once, we have removed the multiplication of the number of
steps from the calculation relating steps at one level to steps at the level above
it. LGz does this.

In LGz we have a kind of closure which, through running two levels at once,
absorbs and generates level shifts within itself. Since it is the level shifting
that prolongs a terminating computation at one level into a non-terminating
computation at an infinite number of levels, we can use this interpreter that
performs level shifts within itself in finite time to provide full grounding for an
infinite tower.

This makes it possible to evaluate a tower that has at the top an interpreter
that can handle level shifts within itself, while still providing the illusion of an
infinite number of levels of interpretation, as described in section ??.

We call this kind of interpreter an umbrella since it appears to occur at the
top of the tower, and caps the tower.

Shadowing interpreters

We cannot take this solution as it stands because each level can have only one
closure running in it at once—it contains a list of closures, as a call stack—and
each closure can represent the state of just one level. (The way that several
closures are running at once is at separate levels of interpretation, as explained
in the clock analogy of section ??) Because of this relationship between closures
and the representation of tower levels, this shift-absorbing closure must, by the
rules, be outside the tower, shadowing an infinite string of ordinary levels that
are within the tower. This is as explained in section ??:

A closure in the tower is shadowed by a closure outside the tower if the
one outside the tower implements the one inside the tower and all those above
it in the tower that take part in its interpretation. The closure outside the
tower is called the shadow of the corresponding closure within the tower. As the
meta-evaluator of a tower begins the evaluation of each closure, it first checks
whether the closure is in a table of shadowed closures—the shadow map. If the
closure does have a shadow listed in the shadow map, the meta-evaluator calls
the shadow directly, that is, as a procedure within the meta-evaluator. If there
is no shadow, the closure is interpreted stepwise by the meta-evaluator—that
is, as a regular interpreter does.

The idea of shadowing is central to this thesis. In later chapters, we develop
the details of a mechanism for shadowing the upper initial string of a tower,

4.4. TOWER COMPUTABILITY; PROPAGATION; INTEGRITY 49

which makes it possible to implement the interpretation of an infinite tower in
finite time.

The shadowing interpreter of a tower, in performing some number of steps,
makes each of the levels that it interprets—that is, those below the one that it
shadows—take some smaller number of steps in each of their actions. In this
way, it is like the infinite string of levels which it shadows, since their progression
through their procedures would also cause the same effect on the lower parts of
the tower.

Let us return to the digital clock analogy of section ??, in which we examined
how the minutes digits affect the hours digits, and so forth. Starting at the
seconds digit, and setting off in the other direction, we can posit the existence
of further digits, which are usually invisible: a deciseconds digit, a centiseconds
digit, and so on. In a typical clock, some of these digits will exist, but there
will not be infinitely many of them. While our model of how a clock works may
continue to produce more and more digit devices, each counting faster than the
last, in practice we eventually reach some device that ticks without the aid of
a previous ticker—or rather, one in which the ticks are of a very different kind,
such as the resonance of a quartz crystal. The shadowing interpreter of the
tower takes the place of the crystal in the clock. Although there could be more
counting devices, a non-counting ticking device (with the same interface at its
slow end as a counting one) rounds off the chain of counters, and shadows an
infinite number of even faster counters.

It is worth noting that the shadowing interpreter has not taken control away
from the string of interpreters that it shadows. It exists beside that non-existent
string, just as the quartz crystal in the clock exists beside the non-existent extra
counters. It does not displace them! They are still there as a concept.

From the abstract, extensional point of view, the last counter sees some-
thing equivalent to a string of counters. From an implementational, intensional
viewpoint, the crystal is there. They are views in two worlds of the one thing
performing its function.

The extensional view is what you see if you look at the counter chain from
any one of the counters. If you look at it from the quartz crystal, you are
viewing it from the intensional viewpoint.

Since reflection is a means for abstraction, it is natural to view it reflectively,
using its own abstraction. This always involves taking the extensional view of
the system—looking upwards in a tower, or outwards in a meta-tower. This is
not useful for creating and starting a (meta-)tower; the tower’s creator must
work from the outside in (like Smith’s lightning bolt), as the tower cannot start
itself from nothing. This necessity for an outsider follows the same logic as that
of section ??. From the outsider’s point of view, the system within the (meta-
)tower is flat; it is all processed at one level, as the application of the outsider;
in the clock analogy above, the crystal puts its output into what may be seen
as a single counting device; whether that counting device is infinite or finite is
irrelevant.

50CHAPTER 4. HOW THE TOWER LEVELS ARE LINKED TOGETHER.

Rules for groundedness

In the discussion above, we have assumed that we work with grounded towers
only—as indeed we must for the practical evaluation of a tower. However, the
same rules hold for non-grounded towers, which cannot be evaluated, but can
still be manipulated in the same way. A non-grounded tower is ungrounded
because it has no grounded interpreter anywhere in it. A non-grounded tower
can be made into a grounded tower by connecting to it a grounded tower,
which will interpret it in a finite number of steps. (The connection will be at
the bottom of the boring part of the tower.) These grounded towers ground the
towers to which they are appended by acting as oracles [?] for the interpretation
of their highest levels.

Integrity of strings

If an interpreter level evaluates its application finitely for a finite application,
then we say the interpreter has integrity. A finite string of adjacent levels also
can have integrity (as a relative property; this is integrity with respect to an
oracle), if its highest level of interpreter terminates evaluation for a terminating
application run at the lowest level. These are both the same concept of integrity.
As explained above, an interpreter which evaluates more than one level is an
exact substitute for a string of interpreters (an infinite string, if the upper end
is boring).

Since an infinite tower can be evaluated by an interpreter that absorbs level
shifts, and is thus, effectively, an extensible finite tower, it may also have in-
tegrity, but only if its higher end is accessed via its umbrella interpreter. This
is because it is the umbrella that provides the computability. If we look at the
infinite upper string of interpreters that the umbrella stands in for, instead of
looking at the umbrella, the tower then appears not to be grounded.

The integrity of a string of levels is broken by it having any level without
integrity. A level is grounded1 if it is linked with integrity to a level that is
grounded, such as an umbrella, or a string that is known to be possible to link
to an umbrella.

Unlike conventional semantic definition systems, reflective interpretation al-
lows us to reason about non-computable programs, and constructs which cannot
be computed, just as easily as computable ones. This may not seem very useful
in its own right, except for pure theoretical linguistics, but since computability
is undecidable for most programs (and so all programs must be treated as poten-
tially non-computable) this is not necessarily a problem, and so this approach
is very generally applicable.

The solution to the problem of grounding towers is mentioned at the start
of this chapter: at some level on our way up the tower, we find a meta-circular

1N.B. the ground is at the top, and so can be used to grow computer science trees which
have their roots at the top.

4.4. TOWER COMPUTABILITY; PROPAGATION; INTEGRITY 51

interpreter (let us say Ln) whose interpreter, Ln+1, is the same as the interpreter
Ln itself, that is, Ln ≡ Ln+1. Since this level is a meta-circular interpreter, this
relationship holds for the next level too, and for all subsequent pairs of levels
Lm, Lm+1. Closing this transitively, we have

∀p, q : p≥n,q≥n.Lp ≡ Lq (4.11)

that is, once we have reached the level Ln, all levels thereabove are the same.
Since we wish to use reflection in real computations, for practical purposes

we can make the tower above that level into a circular structure, such that not
only is

Ln ≡ Ln+1

but also
Ln = Ln+1

In terms of data structures, the interpreter field of that closure points to the
closure itself. We call Ln the standard evaluator.

Shift-absorbing levels

The real interpreter outside the tower, called the meta-evaluator, mimics this
closure Ln, and all the closures past it in the tower. This imposes a constraint
on towers in the system: any which are to be evaluated must have Ln as their
upper initial string, which, given that the meta-evaluator mimics them, implies
that they are grounded. A tower which has a repeating chain of anything other
than Ln as its initial string cannot be evaluated by the meta-evaluator, which
keeps on realizing new levels until it gets to one running Ln.

The operators that we provide for reflection help to maintain this, in that by
default all new closures are created with Ln as their interpreter. It is possible
to enforce this rule absolutely, by insisting that any closure that becomes the
interpreter of another closure must be grounded through the standard inter-
preter. This can always be determined, since the route up from a closure can
be determined statically from its contents.

The standard evaluator and the meta-evaluator

Since the standard evaluator is an invariant part of the system, mimicked by
code outside the tower, it must not be mutable by reflection operations. The
meta-evaluator employs a technique for maintaining this integrity while still
allowing reflection at any level of the tower, without requiring infinite storage
or time. This technique is described in detail in section ??.

If the reflection system tries to access or modify Lm (where Ln is the lowest
level mimicked by the meta-evaluator, and m > n— that is, any level repre-
senting the standard interpreter), new levels, all running copies of the standard
evaluator, are created in memory for levels Ln . . . Lm. The ‘evaluator’ link of
Ln−1 points to the new Ln, and the ‘evaluator’ link of Lm points to the stan-
dard evaluator. Then Lm is modified as specified by the call to the reflection

52CHAPTER 4. HOW THE TOWER LEVELS ARE LINKED TOGETHER.

operator, and the meta-evaluator continues execution as before, but now shad-
owing levels Lm+1 . . . L∞ instead of Ln+1 . . . L∞. Note that level Ln has not
been changed by any of this activity.

This activity has made into real levels some levels that previously were not
stored anywhere, although they were accessible for inspection. We say it has
realized them.

This realization is part of the process of level-shifting, that is, the transfer
of information or control between levels of the tower. It takes place only as
needed, so not all level shifts will realize any levels; they may simply move
between levels that have already been realized. The realization is performed by
the meta-evaluator, which is explained in detail in section ??.

4.5 Reifying the meta-evaluator

The meta-evaluator implements reflection through non-reflective means, and so
can be an ordinary program, written in a language without explicit reflective
features (such as C, or Common Lisp). But, since reflective interpreters provide
a superset of the facilities of other program evaluators, the meta-evaluator could
itself be the application run by another reflective tower. To extend the reflective
facilities provided by a tower, we can provide a connection between a tower and
the tower of its meta-evaluator.

In doing so, we make the whole system more regular, and we bring reflective
techniques, and meta-circular interpretation—already accepted as a standard
and powerful means of describing interpretation in the Lisp world—to bear on
the problems of how the meta-evaluator is connected to the tower. We later
find a similarity between this connection and the connection between operator
names and operator definitions in a language.

The dimensions of the tower

When we provide a means of reaching this second tower (for reifying and re-
flecting it) from the first one, we have a new form of reflective system, which
has a two-dimensional tower rather than the one-dimensional tower already de-
scribed. The second dimension, like the first, may continue either for one level,
as a non-towering second dimension:

However, since the point of a tower-reflective system is to make the interpreta-
tion mechanism visible and manipulable, such a meta-evaluator stands out as
an oddity—although it is a running procedure, it is not decomposable in the
same terms as are the other running procedures in the system.

A more consistent model for reifying interpreters demands that we include
the meta-evaluator within the reifiable part of the system, on the same basis

4.5. REIFYING THE META-EVALUATOR 53

as the other reifiable parts of the system. This can be done by providing a
type tower, and including in each level a field pointing to the tower of which
that level is part. (The definitions of the level and tower types are given in
section ??.)

It would be possible to make the meta-evaluator, which is attached to (or
part of) this tower structure, be simply a procedure in the language of the
substrate system. However, for consistency, to allow the same reasoning to be
applied to the meta-evaluator as to the other interpreters, we model it as the
application of a new tower—the meta-tower of the first one:

Note that this second tower is reached not from the end of the first one, since
that has no end, but to the side from any closure on the first tower. In other
words, the meta-evaluator is a property of the tower, rather than of a particular
level.

The structure of this second tower is just like that of the first; each of its
levels is represented by same kind of structure used to represent levels in the
first tower. Thus, the same operations for manipulating reified data may also be
used. The reifier and reflector operations themselves may also be the same as
in a single-dimensional tower; it is simply that there is another field, the meta-
evaluator (or meta-tower), in the data structure used to represent towers, and
the content of that field is a tower level running an interpreter. The difference
is not in the form of reification, but in the data that is provided by reification.

To the second tower, the entire first tower is a value within its problem
domain. So, for example, while for the second tower the problem is a program
to execute, for the first tower the problem might be a representation of some
problem outside the world of computers, such as weather prediction. Or, of
course, it could be another tower to interpret.

The dimensions of the dimensions of the tower

Continuing this idea, we can provide third and subsequent meta-towers, contin-
uing in an infinite meta-tower (which we draw as a spiral, to fit it better onto the
page; we draw the successive meta-levels not quite orthogonally to each other,
so that they do not altogether hide those drawn behind them). Note that for
each successive meta-level link, all the levels of one meta-level are accessible to
the lowest level of the next meta-level.

These ideas may be continued to any number of towers of levels, as the struc-
ture provided through reification becomes more and more extensive. However,
however many towers are provided, the relationship between adjacent towers
remains the same.

Just as a tower is implemented by its meta-evaluator running in the tower’s
meta-tower, we can explain the spiral of towers as being evaluated by an evalu-
ator external to the spiral. We draw this as a rod (as if seen in section) running

54CHAPTER 4. HOW THE TOWER LEVELS ARE LINKED TOGETHER.

up the middle of the spiral. This interpreter is, of course, similar in form to any
of the meta-evaluators within the spiral of towers. Just as a meta-evaluator of
a tower shadows the boring part of the tower, the meta-evaluator of a spiral of
towers shadows the boring part of the spiral.

In turn, this program may be the application of another tower. . . and a form of
reflection could be provided that allows access to this tower. It is noteworthy
that all these multi-dimensional forms of reflection differ from the first form we
saw only in the structure provided by reification. The form of reflection and
reification is still the same. The tower type has a field for the meta-evaluator,
which is itself a level or tower, and also through the meta-evaluator‘s tower,
a field for the next dimension of meta-towers. However, this is only one of
the directions that may be pursued; to implement this direction of provision of
meaning, there must be an orthogonal direction also; and another to implement
that. . . and so we have an infinite list of meta-towers to describe each meta-
tower. Having established this, we can see that, we now settle down to a fixed-
point, in which the structure is the same: from each tower, we have access
not only to the meta-tower that interprets it, but also to the meta-tower that
provides the link between these two. This is similar to the first form of tower
reflection that we have looked at, and obeys the rules explored in sections ??
and ??. In the terms already presented, this can be represented by the following
diagram:

These diagrams show how the same idea of the reflective tower may be pursued
to any number of levels.

Pursuing this reflection to higher meta-levels leads to examination of the
ideas of what gives an interpretation its interpretation, or meaning, or ground-
ing (as in the symbol grounding problem). Starting at the highest level, and
constructing lower levels, by implementing them, leads to an understanding of
meta-towers as a real programming device. As mentioned in more abstract
terms in section ??, it is easier to think in terms of running an meta-evaluator
on a system that happens to be in a tower, than to think of using one tower to
implement another.

The idea of shadowing is equally applicable to any of these towers and meta-
towers. The relationships between them are equivalent, and can be extended to
any number of meta-levels—a meta-tower is a fractal structure, where the detail
of each meta-level is similar in form to the detail of any other meta-level. Any
dimensionality of meta-tower may be implemented, although the generalized
meta-tower has its own dimensionality, which is fractal. The known practical
advantages of doing this are swamped by the computational complexity of such
a system, but the ideas have proved worth pondering to further understanding
of simpler forms of reflection.

4.6. MULTIDIMENSIONAL IDEAS IN SINGLE-DIMENSIONAL TOWERS55

The important point here is not that any number of levels and meta-levels
may be returned by the reifier, but that each new plane of meta-levels is intro-
duced in the same way as all the preceding ones: the deeper information about
a level is provided by the level implementing that level. If one level does not
provide its subject level (interpretee) with some particular information about
itself, there is no way in which the subject can derive that information. This is
explained, in terms of a single tower, in section ??.

It is natural to think of reflection from within; as information about the self
is reified, it is brought from outer reaches of the meta-tower in the application.
Likewise, in mental introspection, it is normal to think from objective-world
views out to deeper abstractions about self. However, an infinite regression
along an inner route outwards will never get outside self; whereas other can
observe self from the outside, without any regression whatsoever.

Reflection involving such an outsider is an interesting extension to the idea
of meta-towers. One possibility is to have two meta-towers, each examining
(and possibly interpreting, with the help of a suitable outsider) the other, on a
co-routine-like basis—let us call these co-towers. Further (in the sense of more
encompassing) related forms of reflection involve reflecting on the observer of the
co-towering relationship (which is what allows each of the co-towers to interpret
parts of the other). However, one thing is common to all these forms of inspec-
tion: introspection at any level is only possible when a higher (outer/other) level
provides it as a form of extraspection and makes it available to the introspecting
level.

4.6 Multidimensional ideas in single-dimensional
towers

The full meta-tower system described above may seem far more complicated
than is necessary to describe interpretation. So what is its relevance here? It
first comes into the system as a way of making the meta-evaluator accessible
just as the rest of the system is; but having been introduced, it finds further use
in explaining the nature of ordinary reflection, and for explaining the meaning
of types in a tower of meta-circular reflection (as explained in chapter ??).

The two-(or higher-)dimensional tower is not just an interesting complication
of the tower, but is a useful concept for designing meta-evaluators for reflective
towers of one or more dimensions. Higher-dimensional towers are hard to explain
without first looking at the type theory behind reflective towers, and the type
theory cannot be explained without first looking further at the towers. Because
of this, the following text makes some forward references to chapter ??, and
might well be re-read after reading that chapter.

The benefits of treating even a flat meta-evaluator as though having a tower
level itself include a similarity to the standard evaluator that it mimics, and
a better match of the type systems, as the requirements for the evaluator and
the meta-evaluator are very similar, and may even be identical (see section ??).

56CHAPTER 4. HOW THE TOWER LEVELS ARE LINKED TOGETHER.

The use of reflective techniques in this research helped to design a clean, concise
standard interpreter, and the same conciseness has shown through in the meta-
evaluator.

In particular, the tower’s model of each level, and of the links between levels,
has helped to define the meta-evaluator’s view of each tower level and of its
access points to the tower. This is a first shift of a new orthogonal level (see
section ??) and non-identity mappings of intensional values in and out of the first
tower are useful here. These are kept to a minimum, as they involve computation
instead of just copying, and so are slower than identity mappings. The mappings
are really part of the meta-evaluator, and not visible to the procedures within
the tower unless made available by the meta-evaluator. This strictly one-sided
mapping ensures that while the tower can inspect itself absolutely completely, it
has no access to the meta-evaluator, other than that which the meta-evaluator
specifically provides. Thus, the appearance of the tower to itself as infinite and
enclosed is utterly maintained. Here, use of the reflective model of level-shifting
evaluation has been made explicitly, to prevent reification from occurring at a
particular point.

This way of designing the meta-evaluator leads to the meta-evaluator being
very similar to the normal evaluator, but extended to handle the level shifting.
It is a significant, and pleasing, discovery that the difference between the stan-
dard evaluator and the meta-evaluator is remarkably similar to the standard
evaluator itself (or rather, to the difference between the standard evaluator and
the identity function)—there is a correspondence, perhaps even an isomorphism,
between interpretation itself and level-shifting, as both implement the injection
(or extraction) of meaning at one level by the level above.

Unidirectional visibility is provided automatically, as an evaluator always
sees its structural field. The other side of intervisibility—the structural field
seeing the evaluator (and therefore the evaluator being within the structural
field of the evaluator’s structural field)—is only possible if given by something
that already has that evaluator within its structural field. This something may
be the evaluator’s evaluator, or the tower’s meta-evaluator—or it could simply
be any single operator at such a level.

This point is re-iterated several times in this thesis, at several levels of mean-
ing; it is central to understanding the meaning of reflection, and also to the im-
plementation of reflection. What matters is not the infinite regression, nor even
the shadowing (see section ??) but that reflection in level n can be provided
only by level n + 1 (for flat reflection) and tower reflection of level n + 1 into
level n can be provided only by level n + 2.

4.7 What does this architecture allow us to do?

Using this model of interpretation, we can change the way that a program is
interpreted, in accordance with a simple, consistent model—very distinct from
the traditional type of self-modifying program. These changes may be composed
systematically through the order in which the changed interpreters are installed

4.7. WHAT DOES THIS ARCHITECTURE ALLOW US TO DO? 57

in the tower.
The reflective nature of the interpreter makes it possible to implement such

language features as variable length argument lists through an orderly model of
access to the state and code of the program and its interpreter.

It also provides, through giving procedures access to the program, a gen-
eralized form of Lisp’s fexpr mechanism—procedures which do not evaluate
their arguments automatically—and thus may be used to define language con-
structs (“special forms” in Lisp terminology). This makes possible the addition
of language constructs by procedures at the same level of interpretation as the
program in which they are to be used.

The fexpr-like facility is one way in which reflective interpretation can be
used to define language features. Another facility is that for changing the under-
lying method of interpretation, independently of changing individual constructs;
for example, tracing might be added, or the implementation of variable lookup
changed. How this is separated from the definition of individual constructs is
described in chapter ??.

One way in which systems based on such reflective meta-towers differ from
many languages and their implementations is that everything in the system
is a first-class value—even such things as languages may be passed around and
manipulated just as, for example, number may in many languages. This removes
(or allows languages to allow programs to remove) many of the restrictions that
many languages impose. In effect, it allows each language to be its own meta-
language.

The multi-dimensional form of reflective interpretation allows the same things
to be done to the tower implementation mechanism (meta-evaluator) that reflec-
tive interpretation allows for the interpreter implementation (evaluator). While
perhaps not adding as much useful functionality as the first dimension, this
does enable further control over the system; but possibly more significantly, it
explains how reflection in the tower works by relating it to something more gen-
eral and more powerful, and also and also clarifies that it is neither the number
of levels nor the number of dimensions that matters, but whether a particular
transfer of information or control is moving inwards or outwards in the towering
system.

This gives us a new tool for looking at the symbol grounding problem in the
context of procedural language interpretation. Accepting that no system can
ground itself (an interpretation of Gödel’s incompleteness theorem) it provides
not only a model for moving towards and away from the ground of the system,
but it also describes grounding of one tower in terms of another tower, which we
treat as being grounded itself—an expression of Turing’s “oracular computabil-
ity” [?], in which, for each tower, the tower of its meta-evaluator is the oracle.
With this description of groundedness as being only the concern of two adjacent
level (or strings of levels, see diagram on page ??), we can describe it in terms
of the first meta-level that can describe the relationship between the two levels
concerned.

58CHAPTER 4. HOW THE TOWER LEVELS ARE LINKED TOGETHER.

4.8 Summary of links between levels

The tower of interpreters is made up from links between adjacent levels of in-
terpretation. Reification and reflection are complementary operations, and they
use complementary links between tower levels. Since both links are set up by
parts of the calling mechanism, they always occur in pairs. These links make a
bidirectional chain throughout the tower.

Since a tower is an infinite structure, any computation involving all levels
of it cannot terminate. An application that uses reflection and does terminate
must therefore make reference to only a finite part of the tower.

Therefore, the infinite tower may be represented finitely, and it is possible
to reason about how many steps of interpretation are needed at one level to
implement each step of interpretation at a lower level.

To make the finite representation of an infinite string of identical levels, we
make the highest part of the tower into a circle, in which the same level occurs
again and again. Whenever an interpreter tries to reify the level that makes up
this circle, a hidden meta-evaluator makes a copy of the level in the circle, and
passes that copy out as the reification of the level in the circle. The application
can then modify the level it has been given, without upsetting the level that is
still in the circle.

Thus, the infinite part of the tower is stored compactly as a circle, which
is unrolled on demand to produce an infinite supply of identical levels. To the
application, this is indistinguishable from there being a real infinite chain of
levels at the top of the tower, instead of the circle and the unrolling mechanism.

The idea of the reflective tower and the means of reflection may also be
applied to towers of towers—that is, meta-towers. Meta-towers might at first
seem complicated to reason about, but an understanding of them brings a read-
ier understanding of ordinary towers.

The design of the meta-evaluator, and particularly the mechanisms for de-
tecting the need to unroll a new level from the circle and for unrolling the levels,
are a major new development of this thesis.

Such knowledge is too wonderful for me; it is high, that I cannot attain
unto it.

Psalm 139:6

Chapter 5

Mixing Languages

5.1 Introducing mixed languages

In this section, we look at the idea of having different languages at different
levels of the tower—a possibility mentioned in earlier work on reflection [?], but
not investigated further there, as, for simplicity in describing reflective interpre-
tation, the languages were taken to be the same at all levels. However, in the
Mix system [?] the languages are taken to vary between the different programs
being mixed together.

The desirability of mixed languages

Mixed-language systems have been around for a while now, often for specific
tasks. They are used when specific features of several languages are all com-
bined. Typically, use of one language is nested within use of another. This may
be done as a way of extending an existing language, or as a way of developing
a new language without having to develop the parts of it that are already done
adequately by an existing one. There are several such language combinations
in common use on Unix systems, for example:

• make/sh in which make provides declarative control, and sh provides com-
mand parsing, environments, and non-declarative control.

• lex/C and Yacc/C in which C is used to perform low-level work under
higher-level control from the parser generation language.

Other language systems which in effect combine languages are those in which
different areas of one language are so dissimilar that they are handled separately,
or are separated for convenience of implementation. Examples of this include:

• Common Lisp / format strings where the format strings are a specialized
language embedded in the Lisp system

59

60 CHAPTER 5. MIXING LANGUAGES

• troff / eqn / tbl / pic / refer which are a nest of languages which may be
mixed in one program to produce a document, each of the languages being
much simpler than a single language providing the same programming
functionality itself.

Such arrangements, being well-established in practice, have shown them-
selves to be powerful and effective. They are, perhaps, examples of the best tools
being selected for particular jobs, making elegant combined tools available. This
may also take some other forms, such as merging pieces of assembly-language
code in-line in FORTRAN or C (asm statements) or use of such a feature as the
unix system(2) call, which allows a C (or other compiled language) program
to interpret a line of shell, which might run any form of program—either a shell
script or a program in any compiled (or interpreted) language—while also using
the shell’s own features, such as wildcard expansion.

When languages occur in groups or pairs like these, often one of them is
being used as a higher-level language than the other—closer to its application
domain. For example, in YACC, the YACC parts of the program are a higher-
level description of what the program has to do, while the C is used for low-level
actions. In many of these cases, the higher-level of the two is also more specific
to its application field, and the lower is a relatively general language, for example
tbl is specialized for typesetting tables, whereas troff, with which tbl works, is a
general-purpose typesetting language.

It is interesting to note that Unix—a system designed, or allowed to evolve,
more on practical considerations than for abstract theoretical elegance—includes,
in its model of loading and executing programs, a device for allowing program
files to be interpreted automatically by an interpreter specified in the file. When
a file is about to be loaded for execution, its first few bytes are examined for
being a particular magic number (representing the ASCII string #! or #! /).
If this is found (instead of the magic number value that indicates an executable
machine-code file), the program in the file named in the following bytes of the
original file is run instead, using the original command line arguments but with
the original filename and optional flags (from the original file) prepended. This
mechanism, originally provided to allow a choice of shell languages with au-
tomatic selection of the right one for each shell script, allows an interpreted
program (in any language) to be run in place of a compiled one—with the one
restriction that the interpreted language must allow # as a comment charac-
ter! This is a tower of interpretation, although one which does not necessarily
provide a program with means to access itself or its interpreter.

Another way in which mixed-language working is useful is in the provision
of libraries of useful routines (for example, numerical algorithms); with cross-
language calling being available, a library written in one language (chosen for
its suitability for that use) may be used by programs written in any language,
thus avoiding the need either for writing a version of the library for (and in)
each language from which it is to be used, or for writing an interface library
(typically written in assembler) to perform the adaptations from one language’s
calling protocol to another’s. A practical example of this is that the NAG

5.2. THE REQUIREMENTS OF MIXED-LANGUAGE WORKING 61

FORTRAN library is now provided with a set of C header files, to enable it to
be called directly from C programs.

With truly first-class mixed-language working, there need be no visible seams
where routines written in different languages fit together.

Here, we attempt to formalize mixed-language working, and provide a gen-
eral means for describing languages.

5.2 The requirements of mixed-language work-
ing

A system in which mixed-language working is available as a first-class feature
has several requirements on its design not usually taken into consideration when
designing an ordinary, single-language, program execution system.

A common framework for interpretation must be found into which a wide
variety of languages may be fitted. At the same time, this framework must be
suitable for reification and reflection—programs, program state, and languages
must be in forms that can be manipulated readily: everything should be de-
composable (or destructurable) to a suitably fine level—for example, it should
be possible to extract the representation of a variable binding, a statement in
a program, a term in an expression, a construct in a language—and all these
representations should be the same in all languages.

There are two areas in this design task: a suitable representation for the
static parts of the system—program and interpreter; and one for the dynamic
parts—the program’s state and the interpreter’s state.

It turns out that the most flexible representation for the procedures of a
program leads naturally to a representation for languages which has a suitable
granularity for picking out individual language constructs and manipulating
them. We weave this representation into the basic structure of closures (as
described in chapter ??), and in doing so find a solution to storing the dynamic
part of the system: the application data and application state data, which are
stored in the variable storage (value list and environment) of the program and its
interpreter respectively. This form of data storage fits many languages’ models
of variable access very well.

A common program representation

Using a program representation based on parse trees and a state representation
based on stacks or continuations, our mechanisms can support a wide range of
languages. Lisp in some form (Scheme being perhaps the best example [?]) is
perhaps the language that is closest to our model—also having the advantage
of very little syntax. Scheme is the dialect most commonly used for reflection
experiments so far, but the differences are not significant in the examples given.
Being a simple representation of a parse tree, a Lisp expression is a convenient
way of representing constructs parsed from other languages, and so we use it here
as our main language for describing features relevant to languages in general.

62 CHAPTER 5. MIXING LANGUAGES

Since the core of Lisp is a particularly simple language, we will also give special
attention to how it maps onto our reflective system, taking it as the primary
example language.

Also, Lisp is both a functional language and an algorithmic one, and thus its
structure is able to receive conveniently mappings from either of these types of
language. The form of Lisp that we use here includes state-dependent operators
such as while loops, and assignment.

Much of the code given in examples in this thesis could be run on almost any
Lisp system; the parts that are not in the languages provided within Platypus
are actually Common Lisp [?].

In our representation, node (expression, or statement) in the parse tree is
identified by its first element, a leaf (symbol or name, rather than a further
branching sub-tree) which we call the operator of that node. This is always the
case, no matter how the construct appears in the textual form of the language.
For example, the expression written in many languages as a + (b / c) is
stored here in the form (+ a (/ b c))—its Lisp-like representation.

How various languages fit this model

Different languages map onto this common structure with varying degrees of
ease: the model was designed for flexibility, but paradigms of computation
vary widely, including pattern replacement languages such as SNOBOL and
constraint languages, for example, along with the normal Turing Machines and
algorithmic and functional languages.

Mapping Lisp onto our model of interpretation is trivial, since, as explained
above, the model is so similar to Lisp.

The block-structured algorithmic languages also fit the model quite well, since
their block structure is naturally easy to represent as a parse tree, and our model
of interpretation has much in common with them. Those languages, such as
Pascal and Algol, which are quite careful about type conversions and coercions
fit in cleanly; C, with its freeer typing system, fits the control structure easily,
but is not so comfortable on the tagged type system.

The non-block-structured languages such as FORTRAN, COBOL and BASIC
can be fitted in, although slightly awkwardly. Their procedures must be written
in terms of sequential execution operators which work their way through a series
of statements (sub-trees) and which also provide facilities to switch (jump) to
specified sub-expressions. (This switching may be done by a separate GOTO
operator, or by the sequence operator directly.)

Stack languages such as FORTH and PostScript fit in as block-structured
algorithmic languages; their stack-based data storage is not a significant dif-
ference as far as we are concerned, although these languages are not usually
regarded as being in the Algol group.

Logic languages, such as Prolog [?], are one of the worst matches to our
model; their definitions must be procedurized (as explained in section ??) to
produce something that we can store in terms of ors, ands and bindings. How-
ever, once procedurized, they fit our model of environments well, particularly in

5.3. AN ABSTRACTION FOR PROGRAMMING LANGUAGE INTERPRETERS63

how they can then share bindings/instantiations with non logic-based languages,
as explained in section ??.

One complication that occurs here is backtracking, which may be handled us-
ing continuation passing [?]. In the committed-choice variety of logic languages,
this problem is obviated by not providing backtracking.

A further problem in interfacing logic languages to other languages (a general
problem, not unique to this system) is that logic languages may return a choice
of results, rather than a single result. This is part of quite a general difference
between families and languages.

Object-oriented languages, which may be regarded as a variety of algorithmic
language, can fit this model comfortably, using a closure to represent each ob-
ject. The language and type-evaluators of the closure are then the method
dispatch table for that object. A variety of object-oriented language that is
clearly suited to constructing this way is the actor languages described in [?].

Reflection is commonly associated with object-oriented languages, perhaps
largely because of the fame of the reflective object-oriented language SmallTalk80
[?]. In developing Platypus, I have been careful to avoid an object-based style,
to show that reflection and object are entirely separate facilities in a language
system.

One interpreter, many languages

This thesis is about a system in which languages are values that can be passed
around—which inherently has the ability to be a mixed-language system. We
have described in section ?? a system using one standard interpreter. How can
we extend a single interpreter to handle a variety of languages? The ability
to do this (and many other benefits) depends on a suitable abstraction for a
language interpreter, and constructing that interpreter is a central part of this
thesis.

5.3 An abstraction for programming language
interpreters

Our abstraction for language interpreters is based around the parse tree abstrac-
tion for procedure representation. The language is arranged as a collection of
named operators, where the names of the operators are those that appear in the
nodes of the parse tree, and the definitions referred to by those names are the
closures of the procedures used to implement each named language construct.
Thus, a language—as we represent it—is a mapping from operator names to
operator definitions. This mapping is done by binding operator names to op-
erator implementations in an environment. We sometimes will refer to such
environments as languages from here onwards, and any references to languages
in programs are to this kind of value. In mixed-language interpretation, each
part of the program must be interpreted in the appropriate language. We take

64 CHAPTER 5. MIXING LANGUAGES

the closure as a suitable unit for linguistic atomicity (if nothing else, the syn-
tactic considerations would make a finer grain cumbersome!) and so we include
in each closure the language of that closure, stored as an environment binding
operator names to the corresponding definitions.

Such a use of environments other than the variable binding environment(s)
assumes the provision by the substrate system of multiple environments [?] and
environments as first-class values. The way we may acheive this is described in
section ??.

As well as the language (environment of operators) an interpreter contains
the evaluator, a procedure that glues the rest of the language implementation
together. It is the evaluator that starts each step of program interpretation, by
finding the operator name for the current node, looking it up in the language,
and calling the result of that lookup, with the node as one of the arguments
of the call. Operator definitions, in turn, use the evaluator to evaluate their
sub-expressions as required.

Although unnatural for some languages (such as awk), this simple representa-
tion makes representation of many languages (perhaps most current languages)
simple and concise, and I consider that it has proved its worth in practice.
This is supported by the common use of Lisp as a basis for implementing other
languages.

In the preceding chapters, we have used the term interpreters as a general
term for what, from here on, we call evaluators, and what we had called the
standard interpreter is now called the standard evaluator. The evaluator-and-
language model is just one specific model for constructing an interpreter, and
so interpreter is the more general term. We will still use it sometimes when
referring to interpreters but not specifically to evaluators.

An evaluator is a closure called with two arguments: the evaluand that it
is to process, and the level which provides the context (environment, language
etc) for that evaluation. Since the closures in the argument level have closed
over all the information needed to interpret the program it contains, no other
information is needed by the evaluator. The program, arguments, environment,
language, and even the evaluator itself are all included in the closure.

In section ?? we will see that this evaluation function is performed by one
case of a more general level-based evaluator procedure. This is because the
fundamental evaluator rôle is not the only part of a level’s evaluator that must
be thus changeable. The cleanest, most concise, implementation of a tower level
evaluator turns out to be that in which each level has a general evaluator rather
than an evaluator just for closures.

The interpretive closure

Reflective tower evaluation adds some new requirements to the conventional
closure operation, since more information is now available in the current state
of a program. To hold the extra information, we add some new components to
our closures. The closures we use in this system contain all the usual parts of a
closure:

5.3. AN ABSTRACTION FOR PROGRAMMING LANGUAGE INTERPRETERS65

• The procedure to evaluate

• The arguments with which the procedure was called

• The environment in which the procedure is to execute

and also two new parts:

• The language in which the procedure is to be understood. This is an
environment (see section ??) binding operator names (see section ??) to
the implementations of each operator

• The evaluator with which to process the procedure

The implementation of an operator is a procedure which interprets occurrences
of that operator when applied to a level containing that operator as the operator
of its continuation expression. The mechanism performing this application is
explained in detail in chapter ??. The operator definition procedure is itself
represented as a closure, and hence starts a new tower. Like an evaluator closure,
an operator closure takes as its first argument the level containing the closure
on which it is to operate, and

Independence and interdependence of closures

This organization of the interpreter into evaluator and language brings several
benefits:

• it separates the rôle of control of evaluation (the evaluator) from that of
implementing individual operators, control structures and so on.

• it makes the language into an abstract data-type that is easy to implement;

• the interface between operator definitions and the rest of the system is
simple and well-defined

• each operator definition is separate from all others, so it is easy to add new
operators, and also to analyze the action of an operator in isolation, mak-
ing assumptions about the way it is called, and proving those assumptions
separately.

This leads to a very simple standard evaluator, with a clean structure to it,
that is flexible for implementation of a variety of languages (as discussed in
section ??), and that makes it easy to modify and extend languages through
reflection.

It also means that the same evaluator, being a parameterized interpreter,
may be used to interpret programs in a variety of languages by providing the
appropriate operator definitions. Here, for example, are some possible combina-
tions. Note that the language must match the program—that is, it must provide
all the operators that the program uses—whilst either evaluator may used with
either language and program.

66 CHAPTER 5. MIXING LANGUAGES

Also, different evaluators may be used with the same language, calculating
the same results in a different manner. For example, a level could be evaluated
strictly or lazily, with or without tracing or single-step and so on. All this can be
done without altering or needing to understand the operator definitions. This is
possible because the interface between evaluators and languages and operators
is well-defined and fixed.

Modifying several interpreter levels allows changes to be composed together.
For example, Facilities such as unusual evaluation orders and traced evaluation
may be combined by adding independently several special evaluators. For ex-
ample, tracing of a lazily evaluated program may be done by adding a tracing
evaluator next to the program, and a lazy-evaluation evaluator next to that.
Were the two added evaluators to be the other way around, the effect would
be to trace how the lazy-evaluation works; thus, combination of tower levels is
non-commutative. Such a change in the processing of one level may affect all
lower levels. For example, it is impossible for a level to do strict evaluation if
a level anywhere above it interprets its subject lazily. This is an example of a
property being propagated pervasively through the tower. Likewise, the results
of adding a tracing level will be affected by the programs of all levels below
it—this really means that the tracedness affects all the lower levels, although
the visible effect will be only in the tracing output—the semantics of the traced
levels should not be affected.

Furthermore, since each closure has its own evaluator and language, the
properties can be changed per closure, so individual closures can be interpreted
differently, allowing such things as tracing of specific procedures or operators.

Including the language in the closure also makes inter-language calling iden-
tical to intra-language calling. Inter-language procedure calls depend on having
a common data representation between the languages. This is covered in chap-
ter ??.

5.4 Writing interpreter components

Defining new operators is straightforward, because the implementation of an
interpreter is divided into small parts (the evaluator and operators) with a
simple, clearly-defined interface between them. This interface hides decisions
about the implementations of other operators and the evaluator, while providing
all the information that is needed to interact with them.

An operator definition, as bound to an operator name in a language, is a
closure, called in the same way as an evaluator, that is, with the level it is to
evaluate as its argument. Thus, both evaluators and operators are written as
ordinary procedures, taking each one argument. The argument is the closure
that is to be evaluated, and has all the information needed for the evaluation

5.4. WRITING INTERPRETER COMPONENTS 67

closed into it, stored in a standard form. Operator and evaluator closures have
no other interface to the rest of the system.

Since it is a closure, each evaluator or operator contains the definition of
the language in which it is written, and contains an evaluator to evaluate it,
evaluators and operators can be written in any language available on the system.
A base language, containing operators shadowed by the meta-evaluator (see
section ??) is provided and is designed to be suitable for use in evaluator and
operator definitions. When interpreted by the standard evaluator, procedures
written in the base language are shadowed, and so run faster than any other
part of the tower. The base language is described in chapter ??. The base
language operators provide basic flow control and provide for locating parts of a
closure such as the argument list of the procedure being interpreted, and provide
reflective and other primitive features.

A closure is an interpreter sufficient for interpreting the level below it if it
provides all the operators needed by the evaluator of that level. To maintain also
the integrity of the tower for reification, it must include a full set of reflective
operators. When these reflective operators are provided in each level, code
reflected into a level can then reflect into the next level, allowing reflective
procedures to capture and pass back reified data through any number of tower
levels:

Here, the actual action of reify has taken place through something running in
the interpreter, but returning its result to the interpreted program.

Chapter ?? has more detail about requirements for languages used by eval-
uators.

This closure-based structure for calling parts of interpreters simplifies writing
reflective interpreter components, because all the information needed is reach-
able through the level passed as the argument to that part of interpreter. Also,
since each level is the base of a tower by virtue of having a pointer to its evalu-
ator, the information in the level also includes all the levels above it.

We now give some example operator definitions. They are written as proce-
dures each taking one argument, the level which they are to evaluate.

68 CHAPTER 5. MIXING LANGUAGES

(defun if (level)

(let ((expr (closure-continuation-expression

(level-continuation-closure level))))

(if (eval (substitute-expression level (second expr)))

(eval (substitute-expression level (third closure)))

(eval (substitute-expression level (fourth closure))))))

(defun + (level)

(reduce #’+

(map ’list

#’(lambda (x) (eval

(substitute-expression

(level-continuation-closure

level) x))))))

5.5 The overall structure of the tower

Although each individual level is simple, the overall structure of the system is
complicated. Not only is each level the base of a tower which stretches through
and beyond the evaluator, but it also has in the language an environment of
closures, each of which also starts a tower.

In fact, the structure is more complex than this, as each level of each of
those side towers will start a new side tower from each of its operator definition
closures, and so will each of those in turn—so as well as having infinitely many
levels, a tower built on this basis has a number of branches—or new towers—
coming into existence at each level. As can be seen in the text and diagrams
of section ??, and as shown again in section ??, all of these are connected with
the meta-evaluator just as the main tower is (and all those which are ever used
must be grounded—as the details, presented later, of the meta-evaluator will
show, in practice they all have the same meta-evaluator).

It is through the grounding of all these side towers that the whole tower
is evaluable, and so we can see that all of these towers must use the standard
interpreter at some stage. Since the retreating shadow technique described
earlier (see section ??) is used when needed, the towers do not need to rejoin into
a single tower at the standard interpreter. Instead, as the standard interpreter
is infinitely far away from each level, all the towers go off to the same infinity,
in parallel lines.

The meta-evaluator arranges that these parallel lines do meet at infinity, or
at least just past the horizon. This is a good way to think of the meta-evaluator.
Although it makes the lines meet at infinity it also makes sure that that infinity

5.6. WHAT CAN WE DO USING THIS MODEL? 69

is just a little further than the furthest away that we can see or touch without
moving from our present position. Although the diagram here shows all these
towers as being of the same length and form, their lengths cannot really be
compared (all being infinite) and their forms may vary as long as they are all
grounded.

Remember also that the meta-evaluator is alongside all these towers, rather
than just meeting them at their infinitely far far ends. One might perhaps choose
to regard the meta-evaluator as the paper on which the towers are drawn.

There is the multi-dimensional form of reflection, mentioned in section ??, in
which a program can access its tower’s meta-evaluator as the base of another
tower, perpendicular to the first tower. This is useful for thinking about the
implementation of the first tower, because it connects the tower to the tower’s
implementation in much the same way that tower reflection connects a closure to
the implementation of its interpretation. Also, each of these grounded parallel
towers described above meets its meta-evaluator (meta-tower) at all points along
its length.

To include the meta-evaluator in the system, we must give up the first tower’s
pretence that there is no meta-evaluator, and provide a means for going from
one tower to the next. This can be done in defining a type for towers, by
making the type connect a tower with its meta-evaluator/orthogonal tower, and
allowing any program to find the larger tower of which it is part, as described
in section ??.

Since these links lead to the next meta-level, access to further dimensions of the
spiral of towers can be made possible if that is provided in the type of data used
to represent towers.

5.6 What can we do using this model?

This model for interpretation and interpreters brings in several new possibilities.

• It allows fully transparent inter-language calling. This is possible without
such a strongly structured model; it depends only on one area of the
model, the common data representation for all languages: environment
variables, local variables, procedure arguments and results, as well as the
actual representation of values (integer, real, string, symbol etc), are what
matter here. This in itself does not involve reflective techniques at all.

• It allows a language to be extended by the addition of new constructs
(operators), usually completely independently of other constructs in the
language. It also allows existing constructs to be redefined individually
without altering other constructs.

70 CHAPTER 5. MIXING LANGUAGES

• It allows the model of interpretation to be changed without reference to
individual constructs. Thus, language-independent interpreter modifica-
tions (and other tools) may be written: for example, a version of the
interpreter that steps through a program under interaction from the user
may be written, that may be used with any language in the system.

• The interpreter, when reified or otherwise examined is in a more suitable
form for manipulation that an ad-hoc interpreter procedure would be.
Programs and interpreter of one language may be handled by any language
with equal ease, subject to the operations the language provides on values
of the appropriate types.

An unusual feature of this model of execution is the flexibility of its variable
storage. The values list may be used as an open stack for stack languages,
or used as though a framed stack for languages with stack frames. Using it for
procedure arguments and results)as well as for the procedure’s local workspace)
is done in such a way that the arguments and results for a callee procedure in one
language are handled correctly by the caller whatever the caller’s language—
even when the call goes between framed- and open-stack languages.

The environment variables are suitable for most procedural and functional
languages, and are also usable by deductive languages such as Prolog to hold
their bindings (instantiations) in. When a procedure in a deductive language
calls one in a functional or procedural language, instantiations made by the
former are visible as ordinary variable bindings to the latter. Likewise, a de-
ductive procedure called from a non-deductive one will see as instantiations any
non-local variable bindings that the latter (and its callers) may have made.

5.7 Summary of mixing languages

As well as being a reflective system, our system is a mixed-language one, making
reified languages into part of the evaluation data that is available for manipu-
lation by application programs running on the system.

To make the language a variable part of the context of a closure, we divide
the interpreter into two parts, the evaluator, which is language-independent,
and the language.

To do this, we need an abstraction for languages. The abstraction must be
general enough to handle most languages reasonably well, and to handle all lan-
guages to some extent. Such an abstraction can be devised only in conjunction
with an abstraction for the programs in the languages. For the programs, we
choose to use parse trees, with each node being identified by its operator such
as if or +, and for the languages, we use environments binding operator names
to operator definitions.

This abstraction makes it easy to add new operators to a language, and also
keeps separate the general evaluator, thus making it possible to redefine the
evaluator independently from the language.

5.7. SUMMARY OF MIXING LANGUAGES 71

By making the language (the environment binding operator names to oper-
ators) of each tower level an explicit part of that level, we extend tower reflection
from being a tool for reasoning about interpretation of programs to also being
one for reasoning about languages and their interpretation.

“When I use a word,” Humpty Dumpty said, in rather a scornful tone,
“it means just what I choose it to mean—neither more nor less.”

Through the Looking Glass, Chapter 6

72 CHAPTER 5. MIXING LANGUAGES

Chapter 6

Types, abstraction, and
representation

We now look at the abstract types needed to support interpretation in a reflec-
tive tower system. Development of the type system for multidimensional towers
was an important step in developing these ideas on reflective interpretation.

6.1 Representing the abstract: concretion and
extension

In section ??, we have looked at one aspect of the concept ‘intension and exten-
sion’; we have seen it as applied to evaluation of expressions or interpretation of
procedures. We now look at this topic in the more general sense of representing
any abstract things in a computational (or otherwise linguistic) system.

The fundament of our mechanism for representing things is Gödelization—
representing each word in a language by a digit in some numbering system
(the natural numbers being the common case), and each instance of a linguistic
construct by the sequence of digits that represent each of its components. (The
technique comes from the work of the mathematician Gödel [?], who used it in
describability and computability proofs.) Any way of representing something in
computer memory must be a form of Gödelization, since whatever is represented
must be represented by a pattern of bit groups, as that is all that is available.

In sections ?? and ?? the ideas of program as data, language and evaluator as
data, and evaluation (an activity or process) as data were presented. All of these
are built on forms of Gödelization, and presuppose the facility for representing
programs and mappings as part of the application domain of a program.

73

74 CHAPTER 6. TYPES, ABSTRACTION, AND REPRESENTATION

Gödelization of processes

In looking at intension and extension, we saw that a procedural representation
(which is intensional) for a process becomes a representation of a real (grounded)
process only when an evaluator built of, or upon, an entire extensional definition
of the process of interpretation is applied to it. (The representation of applica-
tion (λ-substitution is a suitable model for application here) is the substitution
of a number encoding a formal parameter with the number representing the
actual parameter.) However, the evaluator must also have an intensional pre-
scription (which is what is applied to the evaluee) as well as an extensional
definition or implementation.

Thus, somewhere within the system there must be a link between the in-
tension and the extension of the evaluator, that allows the evaluator in turn
to realize the link between the intensional prescription of a procedure and the
extension of it—a process performing that prescription. What is the nature of
this link? Is it extensional? Yes, because a prescription of its function, given
an oracle [?], can be written. How is the extension of the link projected onto
the link’s intension? By another such link—and this is part of the description
of the link.

The example above, of representation of procedures, shows the representa-
tion of one abstract thing (a procedure) being used as a concrete implementation
by a context-provider that already has a concrete (extensional) implementation
itself. Although most of this thesis is concentrated on representing the abstrac-
tion of procedural interpretation, the same ideas apply more widely to represent-
ing abstract things, including, naturally, concrete things rendered representable
linguistically by giving names (abstract) to things (concrete) in a computer (or
other linguistic) system.

As already described in sections ?? and ??, the link between the encoding
of something as a Gödel number and the use of that number to mean that thing
can be supplied only by the user (reader) of the Gödel number. Since we make
the user—the supplier of extensionality—be the shadow (extension) of a further
intensional description (Gödel number) into which the original number is applied
(substituted), the user remains hidden: the meaning cannot be found from the
intension alone. For example, given just the intension represented by the word
‘skip’, we cannot find its meaning. Given a provider of extension that maps this
word onto something (an English dictionary, say; or perhaps a Norwegian one;
the two will map ‘skip’ onto quite different extensions, although the word ‘skip’
is spelt the same way) we can then find an intension for this, if we choose to
use the dictionary this way. If, on the other hand, we use the dictionary only
to provide a textual substitution, we simply provide another intension (‘small
jump’ in one case, ‘store sjøfarende b̊at’ in the other), which in turn either can
be understood to represent an extension, or transformed by substitution into
another intension, such as, respectively, ‘små hopp’ and ‘large seafaring boat’.

In general, representation of the abstract requires a scheme for representing
values outside the system by values inside it, with a mapping being defined
between each representable value outside the system and the corresponding

6.1. REPRESENTING THE ABSTRACT: CONCRETION AND EXTENSION75

representations within it.
The ‘system’ referred to above is a level of interpretation, to which an in-

terpretation may be given in two ways: the extensional interpretation in terms
of external values, as mentioned above; and an intensional interpretation given
by another level of interpretation, to which the values in our original level are
the outside values as referred to above. For example, the frequency of an elec-
trical signal may be represented as a number of cycles per second, and that
number may be represented in digital apparatus by a bit-pattern, which may
be represented in electronic digital apparatus by a pattern of voltages.

In this sequence of abstraction→interpretation mappings, we see a tower of
meta-circular definition appearing, much like the tower of interpretation. Each
type of value at one level is represented by a value of some type at the level
above, and these types are in some way related. (There is general review of
types, the need for types, and the use of types in representation, in [?].)

Is this tower of types also a reflective tower? Yes, because the types used to
describe a level of types may be brought into that level, and types may be moved
up and down the tower. Meta-towers of types, describing the mapping of types
between levels of types, may also be constructed, and brought into the towers.
This reflection is not procedural—nothing happens in it; nor is it prescriptive—
it does not prescribe instructions for doing something; it is representational and
descriptive.

These towers of representation, like other towers, have their meta-levels
linked by shadowing; an intensional type tower (described in terms of its struc-
ture, and then in terms of its structure’s structure, and so on) may be described
without infinite regression by an extensional type (describing what the type
means to an outside observer).

Substituting description for prescription, we find that not only are these rep-
resentational towers isomorphic to procedural towers, but also that each proce-
dural tower is backed by a representational tower, which is more fundamental,
in that all procedures require representation, but no representation requires a
procedure.

There is a link between each level of the procedural tower and the level of the
type tower that describes its types. This link, naturally, has a type element to
it and also a procedural element: it is an environment (lookup table) mapping
types to procedures for evaluating values of those types. This environment—the
type-evaluators—is covered in more practical detail in section ??.

Gödelizing the infinite tower

What lies beyond the type tower, as we bring that into our system (that is,
Gödelize it—give it a Gödel number, or encoding)? What represents the repre-
sentation of the representation? This is the meta-tower of the tower of types.
Using this, we can continue our Gödelization of the abstract things underlying
procedurally directed evaluation. We can also Gödelize this encoding itself, and
yet still not describe in full its connection with the ground [?], because from

76 CHAPTER 6. TYPES, ABSTRACTION, AND REPRESENTATION

this intensional viewpoint, we can never create an extensional view or definition
of the system.

In the discussion above, we have taken Gödelization as the basis for repre-
senting values of any type (including types). How can we describe a tower or a
meta-tower, given that each tower in a meta-tower is infinitely long, and there
are infinitely many of them? Does this require infinitely long Gödel numbers,
or may we roll up the boring section of the tower, and encode this as such in
the Gödelization, as is done in computer memory as shown in section ??? Does
such an approach even work in this rôle?

It is possible to bring these two approaches together, by allowing Gödel
numbers for meta-towers to use not only the natural numbers for their digits,
but also transfinite numbers (if the type we use to support the use of digit
strings as numbers allows such a mixed polynomial as a number). In the first
tower in the meta-tower we label the levels as 1, 2, 3 This is infinitely long,
and we can write, in place of an infinite series of numbers (the boring section
of the tower) a single transfinite number (the meta-tower shadowing the boring
section of the tower). Thus, we now refer to the whole tower as ω.

The meta-tower of this first tower has level ω as its first level, and we label
the following evaluator levels as ω + 1, ω + 2, ω + 3 Taking this meta-tower,
and writing out its boring section in detail, we have another infinite series of
numbers, and can do the same kind of substitution again, writing 2ω for in place
of the series ω + 1, ω + 2, ω + 3 . . ., and starting a new tower, with evaluator
levels 2ω + 1, 2ω + 2, 2ω + 3

This infinite series can itself be represented as a meta-tower (as represented
by the diagrams in section ??), and we label this meta-tower as ω2, and its
successive meta-evaluator levels (drawn as gray rods in the diagrams) are ω2 +
1, ω2 + 2, ω3 + 1

6.2 Requirements for the type system

Having explored the ideas behind the type system, and its connection with
evaluation, we now look at what must be provided in the practical type system
that we use in implementing the tower system. As concrete examples, we present
several of the types used by the evaluator and meta-evaluator in Platypus.

Static and dynamic typing

We use a dynamic type system; a static type system would have difficulty with
interpreters being able to pass around objects of arbitrary types for which their
subject programs have called, particularly when the language being interpreted
provides dynamic typing. Dynamic typing being more flexible than static typ-
ing, it also can be used to support statically typed languages without change.

6.2. REQUIREMENTS FOR THE TYPE SYSTEM 77

Kinds of values

The values in a tower reflection system may be seen as being of two kinds:

• the values present in any ordinary computing system, such as numbers,
characters, strings, pointers, structures, lists and arrays

• the values concerned with reflection, such as closures, levels, activation
stacks, expressions, towers, value lists and environments.

To be able to perform computations on values of either kind, we must have
operations handling values of the types concerned. Whether the values are
concerned with reflection or not is not pertinent to how we handle them, and
no types used here are inherently reflective.

There are two groups of types that we must consider, classified according to
whether values of that type may be divided into several parts:

• simple types (such as numbers)

• compound types (such as vectors and structured records)

Simple types

In principle, there are two kinds of simple types (although in practice both are
usually represented by numbers):

• those in which the possible values are related to each other in some par-
ticular way, and in which a value can be produced from other values (such
as numbers);

• those in which values can only be created, and compared for equality
(tokens).

Since tokens can be implemented through simple use of integers, we will not
provide them separately. (In fact, to give tokens convenient textual names,
we use keywords, as used in Common Lisp [?, Section 11.6]. We also use the
substrate Lisp’s symbols in general as tokens for lookup in environments.)

Likewise, logical values can also be represented as a range of integers, al-
though their meaning is sufficiently special that we will could them appear as
a distinct type (in fact, for convenience, they are implemented compatibly with
Lisp, using the symbol t for true and the empty list nil for false).

Compound types

A compound type is one in which a value of that type may be separated into
elements. Each element may be of either a simple or a compound type. We
select an element of a value of a compound type by its index, which is of a
simple type.

There are two kinds of compound type:

78 CHAPTER 6. TYPES, ABSTRACTION, AND REPRESENTATION

• those in which the index is a number (vectors, arrays);

• those in which (in this system) the index is a token (structured records)

Since, as noted above, tokens can be implemented as numbers, structured
records can be implemented as vectors. In this system, the vector representation
underlying a structured record is visible, although not used as the usual route to
access the data in the record. In the Lisp version of the meta-evaluator, records
are represented by defstructed objects in Lisp, while in the C version of the
meta-evaluator, the array form of record is explicit, although usually concealed
through a collection of macros. Such shifts in the nature of the same type are
covered in more detail in section ??.

Note that, like tokens, vectors may be compared for equality, but not com-
pared for order.

6.3 The structure and content of our type sys-
tem

The above considerations give us three fundamental types:

• truth values

• numbers

• vectors

With these, we can perform all the operations of conventional computing sys-
tems, apart from input and output, which we assume are done for us by opera-
tors at the next level up, which we will not try to analyze. We must also provide
support for the types needed for reified state values. This is done through the
types that we already have, as they are expressive enough for this.

Certain types are particularly important in the evaluator and meta-evaluator,
as they describe the values that these procedures handle directly themselves.
The rest of this section lists and explains these types.

The type type

The first type to describe in a list of types is, naturally, the type for values that
represent types—that is, the type of the tags in our dynamic type system. The
main use of these is to identify how to evaluate something. Since this may be
different in any number of different contexts (such as different tower levels, or an
evaluator and the corresponding meta-evaluator) it is neither appropriate nor
even possible to build the evaluation technique into the type (it is not the same
as class methods in an object-oriented system, as they have only the one context
for each type of evaluation). Instead, we simply use the type of an object as a
key to look up in an environment (such as a type-evaluators environment, as
mentioned later in this section and in section ??, and also in sections ?? and ??).

6.3. THE STRUCTURE AND CONTENT OF OUR TYPE SYSTEM 79

It is appropriate, therefore, for types to be represented simply by names. Any
information describing some aspect of the type may be found by looking that
type name up in the appropriate environment.

The closure type

A closure is a structured record, containing these elements:

• evaluator: a (pointer to a) closure, containing the same kinds of elements
as this one. . .

• type-evaluators: a structured record implementing an associative mapping
from types (which are denoted by their names) to closures

• language: a structured record used to implement an associative mapping
from operator names to closures

• expression: either compound or simple; this is in two parts, the continua-
tion expression and the procedure expression, as explained in section ??

• values: a vector of anything

• environment: a structured record implementing an associative mapping
from names to values; there are really two environments, the lexical and
the dynamic

• original: the inactive closure of which this is a copy

• level: a pointer back to the level which contains this closure

The original field exists to speed comparison in the meta-evaluator. For it to
determine whether a closure is an instantiation of a closure that is shadowed by
a kernel primitive, the meta-evaluator looks up the original field of the closure
in the table (shadow map, an environment) of closures that it knows to be
shadowed. The original field is copied when a closure is copied, and changed
when the closure is changed.

The alternative to having an original field is to compare the contents of
closures to determine whether they are the same—a potentially time-consuming
task. An idealized implementation might do such a full comparison, in terms
of whether two closures will have the same behaviour; however this is not nec-
essarily possible to determine, since it cannot even be computed whether each
of them will terminate. The original field gives us a very quick indication of
whether the closure is still identical to the (possibly) shadowed one from which
it was instantiated. This test is also fail-safe; it can indicate that the closures
are different when they are still equivalent, but will never indicate that they are
equivalent when they are not.

Closures have two rôles: when instantiated and made part of a tower they are
building-blocks for the state of a computation. Before instantiation they repre-
sent a stored program, and are copied from this form into the running closures
on the stack by the procedure call mechanism, as described in section ??.

80 CHAPTER 6. TYPES, ABSTRACTION, AND REPRESENTATION

Many of the data structures used in Platypus contain many parts of the
tower. In particular, the value list of a closure (its arguments, workspace and
results) will contain whole levels of interpretation if the closure is an evaluator.
Because of this, we print some of Platypus’ data structures in very limited ways.
For example, closures are printed like this:

#<{closure 244 (pr 1)

expr: { EVAL-IN-CL { QUOTE

{ PROGN

{ LOAD "pl-in-cl.lisp"}

{ LOAD "griss.lisp"}}}}

vals:#<[7: 20

(IF (EQUAL (LISP-VARIETY) "Platypus")

(PROGN

(LOAD "snark-interpreted.lisp"

"snark-interpreted.out")

(EVAL-IN-CL (QUOTE

(PROGN

(LOAD "pl-in-cl.lisp")

(LOAD "griss.lisp"))))))

#<File stream "griss.out">

#<File stream "griss.lisp">

NIL "griss.lisp" "griss.out"]> }>

The value list type

A value list is an extensible vector of values. When a procedure is called,
the value list contains the arguments to the procedure. The procedure, while
executing, uses it to hold local variables. When the procedure returns, it will
have filled the value list with the results. (Like some Lisps [?], and PostScript
[?], our language model allows for multiple results.)

Platypus prints value lists as shown in the closure displayed above.

The environment type

An environment is used to map names to values. In this system, we use an envi-
ronment representation based on hash tables, with lists of previous values. This
is known as shallow binding. In shallow bound systems, each symbol (name)
holds its value directly; this is suitable only for systems with a very small num-
ber of environments (typically one or two, as in Lisp and other languages). Old
(hidden) bindings are kept on a list, much as for deep binding.

In other systems, environments are represented as lists of name-value pairs,
either as property lists or association lists in Lisp terminology; this is called
deep binding. A third possible representation, combining some of the values of
each, is described in [?].

6.3. THE STRUCTURE AND CONTENT OF OUR TYPE SYSTEM 81

Another possible representation of environments is procedural, as described
in [?], and this appears as a possible alternative implementation of part of
Platypus in section ??, page ??.

Deep binding is suitable for systems with many environments, but searching
the binding list may be slow. Platypus uses many environments, such as the
language and type-evaluators of each closure, and it uses them intensively
(one or two lookups for every step of interpretation at each level concerned; see
section ??), so speed of lookup is critical. We use a representation using a hash
table (as provided by Common Lisp, our substrate implementation language;
see [?, Chapter 16]) to hold the current bindings (much like shallow binding,
but not storing the values actually within the symbol) and association lists to
hold the saved (hidden) bindings.

The avoidance of building a value slot or slots into each name (names are
simply tokens, or symbols, which may be compared only for equality) allows
us to use things other than proper names as the names, or keys, in environ-
ment lookup operations. This provides more flexibility—important in a mixed-
language system, as, for example, in PostScript’s dictionaries the keys may be
of any type—and also allows more consistency between the evaluator and the
meta-evaluator, as the shadow map maps closures to shadow-closures just as
type-evaluators and language environments map names to closures—in effect a
shadowed closure is a name for its shadow, in the sense that the appropriate
environment (or context) is required to find from a meaning at one level the
corresponding meaning in another level.

The expression type

There are several kinds of expression. A compound expression, often just called
an expression, is a vector of values. Each value in it is called a sub-expression.
Sub-expressions are normally constant, although they can by changed through
reflection into the expression. Each expression contains

• a first sub-expression called the operator of the expression. When the
expression is taken in the context of a closure (which it normally is) this
is a name, naming an operator closure in the language of that closure

• other sub-expressions, evaluated under control of the closure named by
the operator, as arguments to the operator

References to variables are also a kind of expression, usually appearing as
not as top-level expressions but as sub-expressions of a compound expression.
Two types are used in the implementations in this thesis:

• local variable names, which are distinctly tagged integers indexing into the
value list from the extensible end;

• variable names which represent textual names of lexical and dynamic vari-
ables.

82 CHAPTER 6. TYPES, ABSTRACTION, AND REPRESENTATION

Other things, such as numbers and string constants, may occur as expressions,
and are all usually treated as literal constants.

The printed form of expressions is as shown in the expressions appearing
in closures and levels and towers in this section. Non-local variable names are
printed as textual names, and local variables in the form #<local-2>, where
the number of the local counts from the extensible end of the stack, such that
the top of the stack is referred to as #<local-0>.

The level type

All evaluations occur in the context of a level. Every level always has a current
closure, and it is in this that the evaluations within the level occur; this is also
where most of the context is held. The level serves to hold the current closure of
the level and the list of those saved by funcall operations, and also to connect
the level with the tower of which it is part, and thence to the meta-evaluator (or
meta-tower) within which that level belongs. (The links from one level to those
above and below it, as discussed in section ??, are part of the closure, not of
the level, as it is appropriate for these to be closed into particular procedures,
and thus to be changeable by reflection to those procedures.)

Also in the level is the template closure, used when instantiating an in-
active closure (as described in section ??) into this level.

The components of a level are as follows:

• tower: the tower of which this level is part.

• call-record-stack: The list of saved closures executing in this level. The
front of the list is the current closure.

• template-closure: The closure used to fill in default fields when instantiat-
ing a closure.

The tower field is not needed for a one-dimensional tower, but is necessary
when there is a choice of meta-evaluators, and the meta-evaluator for a tower
is part of the reified state of the tower.

In Platypus, a level is printed like this:

6.3. THE STRUCTURE AND CONTENT OF OUR TYPE SYSTEM 83

#<{Level running 244:

{ LET-LOCAL

{ NIL

{ OPENIN #<local-2>}

{ OPENOUT #<local-4>}}

{ WHILE { NOT #<local-2>}

{ LET-LOCAL { { READ-FILE #<local-2>}}

{ PRINC "in: "}

{ PRINC #<local-0>}

{ TERPRI}

{ SHOW-STATE "file loop"}

{ LET-LOCAL { { EVAL #<local-1>}}

{ PRINC "out: "}

{ PRINC #<local-0>}

{ TERPRI}

{ WRITE-FILE #<local-2> #<local-0>}

{ WHEN { EQ #<local-0> :QUIT}

{ SETQ #<local-4> T}}}}}

{ CLOSE #<local-0>}

{ CLOSE #<local-1>}}

on args}>

The tower type

Just as a level holds a stack of closures, a tower holds a string of levels, and also
a link to the meta-evaluator. This link consists of three fields:

• meta-evaluator: The meta-evaluator of this tower, as explained in sec-
tions ?? and ??;

• type-shadow-map: A map from type-evaluators—procedures that imple-
ment the evaluation of each type, as mentioned above in the section on
the closure type—to their shadows, as described in section ??.

• operator-shadow-map: The operator shadow map, mapping operator pro-
cedures to their shadows, also described in section ??.

As well as the link to the meta-evaluator, there is a link to the next dimension
of evaluation, the meta2-evaluator, represented as the grey rod in the centre of
the spiral in the diagram on page ??, and as ω2 + 1 in section ??. (A further
mechanism, which I have not researched in detail, is required for access to the
rest of the series that begins ω2 . . . , ωω . . . , ωωω

. . .).
A tower is a complex data structure, and describing it in detail can take

considerable space. In practice, it turns out that the most useful part of it to
print is the program it is running; when working with meta-towers, it may also
be useful standard evaluator (which will vary between meta-towers). A tower is
printed like this in Platypus:

84 CHAPTER 6. TYPES, ABSTRACTION, AND REPRESENTATION

#<{tower with standard evaluator

{ LET #<<evaluation-point>>

{ { TYPE-EVAL

{ LOOKUP

{ TYPE #<local-0>}

{ LEVEL-TYPE-EVALUATORS #<local-1>}}}}

{ IF TYPE-EVAL

{ FUNCALL TYPE-EVAL #<local-0> #<local-1>}

#<local-0>}}

and program

{ LET-LOCAL #<<evaluation-point>>

{ NIL { OPENIN #<local-2>} { OPENOUT #<local-4>}}

{ WHILE { NOT #<local-2>}

{ LET-LOCAL

{ { READ-FILE #<local-2>}}

{ PRINC "in: "}

{ PRINC #<local-0>}

{ TERPRI}

{ SHOW-STATE "file loop"}

{ LET-LOCAL

{ { EVAL #<local-1>}}

{ PRINC "out: "}

{ PRINC #<local-0>}

{ TERPRI}

{ WRITE-FILE #<local-2> #<local-0>}

{ WHEN { EQ #<local-0> :QUIT}

{ SETQ #<local-4> T}}}}}

{ CLOSE #<local-0>}

{ CLOSE #<local-1>}}

}>

Note that since this tower is being evaluated at the time, it has closures with
their current expressions being different from their procedure expressions. The
current expression is always a sub-tree of the procedure expression. It is marked
in each of the expressions above with the marker #<<evaluation-point>>,
which is not represented as a value in its own right; it is an artefact of printing
a closure’s two expressions together, being printed when recursive printing of
the procedure expression reaches the same point (eq in Lisp) as the continuation
expression.

6.4 Types and evaluation

The type system of a language is an important part of the language, perhaps
as important as the range of statements available. Thus, it is important for a
mixed-language system’s type system to be flexible enough to meet closely the
needs of many different languages, while having enough consistency of its own to
allow the passing of values compatibly between procedures written in different

6.5. TYPES AND LEVEL SHIFTS 85

languages, as well as up and down the tower as described in section ??. This
is one of the reasons why it is important for systems such as Platypus to use
dynamic typing; static typing is simply not flexible enough to support a system
in which any level contains a dynamically typed language.

To make the evaluator flexible enough, it is parameterized by the type-evaluators
field of the closures it evaluates; this contains an environment binding type
names to the closures used to evaluate things of each type. The use of this
field is described further in section ??. There is a shadow map (see section ??)
corresponding to this and used by the meta-evaluator (see section ??, page ??).
Types not mentioned in the type evaluator shadow map are evaluated by inter-
preted procedures, so it is not necessary for all types to be known ab initio to
the meta-evaluator—new ones may be added at any time at any level.

Using this approach, not only do we make the evaluator extensible to cover
the addition of new types, but it also takes on a more convenient form for reifi-
cation and reflection, as the evaluator for a particular type may be found and
replaced simply through access to the type-evaluators environment. At an
earlier stage in the development of the evaluator, there was a Lisp typecase
statement instead of the lookup and funcall with the type-evaluators envi-
ronment; a change in the evaluation of one type required replacement of the
whole evaluator.

6.5 Types and level shifts

Values may be passed up and down a tower. Since the meta-evaluator does not
change the values it transfers from one level to another, values passed between
levels keep the same intension (representation) while possibly having different
extensions (meanings). For example, bignums may be numbers at a lower level,
and arrays of numbers at some higher level. At the hardware level, which is the
highest level, they, like all other values, will be words and bit patterns.

In C-Platypus, all types within the tower map onto quite different types
in the meta-evaluator: all values map onto structures containing data words
and associated tag (type) words; booleans map onto numbers, structures onto
arrays, and so forth. This is an example of how the type shifts between levels
of a tower are different to type shifts that go in and out of the tower.

In Platypus89, in which the substrate language is Common Lisp, the meta-
evaluator and the tower contents both use the type system of Lisp, and there
is no shift in the meaning of each representation (with the one exception that
string-characters are used to index variable in the local stack frame, as they are
distinctly tagged small integers—Common Lisp does not allow the definition of
new varieties of atomic types). The use of this is shown in section ??.

In Platypus, values normally have the same extensions at all levels of the
tower, which has removed a possible source of complexity and of inaccuracy.
All values also have the same intension (representation) both in the form in
which a higher level uses them, and in the form in which a lower level obtains
them through reifiers. This means that reifying and reflecting information do not

86 CHAPTER 6. TYPES, ABSTRACTION, AND REPRESENTATION

change the representation. This is an important design point in Platypus. Some
reflective systems (such as SmallTalk-80 [?]) hold reifiable data in a different
form from that in which it is passed back through reifiers. For example, a reifier
for a stack frame object in such a system might construct the object from a real
stack frame to pass it back to the program; the real raw stack frame might be in
a unsuitable form (perhaps outside the type system) for handling as reified data.
In the corresponding example in Platypus, the real stack frame is passed back
by the reification of a stack frame. To make this practical, the stack frames must
be kept in a form suitable both for program execution and for manipulation as
reified data.

There are advantages and disadvantages of translating the data between for-
mats like this. Among the advantages are that the reified form might not be
suited for efficient program execution, in which case separating the representa-
tions allows the form used by the evaluator—the reflected form—to be designed
purely with efficient evaluation in mind; and that levels (and other structures)
that have to be realized (as described in sections ?? and refunrollmech).

Whether or not the mapping between intensions at adjacent tower levels is
the identity mapping may be used as a way to classify level shifts into one of two
forms. Level shifts in which this mapping is an identity are closer together than
those for which reifiers must alter the representation, as less work needs to be
done to move information between the levels. Thus, it may be expected that the
first level shift in each tower in a meta-tower (see section ??) may well change
the representation, but others will not. At the lower end of the meta-tower, this
corresponds to the extensional shift between the problem domain—the external
real-world meanings—and the computational domain of manipulable values. In
general, changing the extensional meaning is useful in implementing a tower
(the representation may change between the tower and its meta interpreter)
but is not particularly useful within a tower, where it is more useful to pass
data between levels readily.

As levels share a type system, and can pass data to each other, they also
share a structural field—they can share data with no need to transform it as they
pass it amongst themselves. And yet, they also each have their own structural
fields, as the level interpreted by each interpreter is the structural field of the
level above it and as each level can access all other levels, the whole tower (or
meta-tower) is the structural field of each component—and this includes that
component itself.

Whatever the form of the shift between intensions at different levels, there
must be a defined mapping to do the shifting. Without this, the tower would
be broken for purposes of reification and reflection, and could only be used for
interpretation, imposing a one-way restriction at one of the level shifts. This is
done deliberately in implementing the meta-evaluator in C-Platypus, to ensure
that the meta-evaluator always remains hidden from the tower.

In making representations compatible between levels, we also make them
compatible between the languages of each level, mentioned as a requirement in
section ??. This may require some flexibility in matching the underlying repre-
sentation to each language. For example, some languages, such as Lisp, do not

6.6. SUMMARY OF TYPES, ABSTRACTION AND REPRESENTATION87

have a distinct boolean type, and others, such as C, do not have bignums (digit
string arithmetic), and yet it might be appropriate to provide for these in the
base language and the standard interpreter. Fortunately, the common grounds
of computability and computer architecture have pushed language designers’
intuitions toward a reasonably consistent central set of types (such as integer,
boolean, string, array, record).

With a common type system, routines written in different languages can pass
data between themselves without having to make any modification or transla-
tion to the data. This keeps inter-language calling equivalent to intra-language
calling.

6.6 Summary of types, abstraction and repre-
sentation

The ideas behind the towers’ type system are important in understanding tower
reflection. Types are an essential part of the way we represent values, and the
mapping from one tower level to the next is a representation of a value in one
system by a value in another. The basis for representing values in a computer
is Gödelization, in which digits in numbers denote words in a language.

The type system we use must allow the representation of procedures and of
procedural evaluation, as well as the representation of the application’s problem
domain. It must also be possible to represent the infinite towers and meta-towers
used in reflective evaluation.

The system must provide operations on types concerned with reflection (that
is, types for objects representing parts of the tower) as well as for the types of
objects normally handled by an interpreter. We divide types into two kinds:
simple and compound.

A few types are of particular importance in a reflective tower. Closures are
the central type. Other important types include expressions, environments and
value lists.

As information is moved between levels, its representation may be changed,
although in Platypus it is not changed. The meaning of the same information
may be different at different levels even when the representation is the same.

Although the meaning and representation of information does not normally
change between levels of a normal tower, it may well have to change in going
between the tower and the meta-evaluator that implements the tower.

88 CHAPTER 6. TYPES, ABSTRACTION, AND REPRESENTATION

The shop seemed to be full of all manner of curious things—but the
oddest part of it all was that, whenever she looked hard at any shelf, to

make out exactly what it had on it, that particular shelf we always
quite empty, though the others round it were crowded as full as they

could hold.
“Things flow about so here!” she said at last in a plaintive tone, after
she had spent a minute or so in vainly pursuing a large bright thing,

that looked sometimes like a doll and sometimes like a work-box, and
was always in the shelf next above the one she was looking at. “And

this one is the most provoking of all—but I’ll tell you what—” she
added, as a sudden thought struck her. “I’ll follow it up to the very top

shelf of all. It’ll puzzle it to go through the ceiling, I expect!”
But even this plan failed: the “thing” went through the ceiling as

quietly as possible, as if it were quite used to it.

Through the Looking Glass, Chapter 5

Chapter 7

The standard evaluator

The essential rôle of the evaluator is to evaluate the expression of a level in a
context provided by the information in that level. To do this, it must

• find the type of the expression

• look the type up in the current closure’s type-evaluators environment
to find a type evaluator

• apply that type evaluator to the expression and the level (the level being
passed in to provide the context for evaluating the evaluand expression)

and then, if the expression is a compound expression (like a list in Lisp), it must

• find the current operator, from the expression tree of the level it is pro-
cessing,

• look that operator up in the current closure’s language to find an operator
definition

• apply that operator definition to the expression and the level

A very simple function proves to be all that is necessary both for interpretation
of the level below it and for preservation of integrity up the tower. This chapter
presents and explains that function.

7.1 A general evaluator

The evaluator function is complicated slightly by being both an expression eval-
uator (like Lisp’s apply) and a general evaluator (like Lisp’s eval), used for
example, for variable lookup. This was not the case in early stages of this work,
but turned out to be the cleanest way of making control of evaluation easy
to reflect into. Without this, certain changes (for example, between different
forms of variable binding) would be much harder to reflect in to the system,

89

90 CHAPTER 7. THE STANDARD EVALUATOR

and could even involve two levels of reflection instead of one (which potentially
takes a considerable penalty from performance, as the interpreter’s interpreter
is interpreted by the meta-evaluator, instead of the program’s interpreter). An
alternative to making the evaluator be a general evaluator is to have several
specific evaluators as fields of each closure; a tidy form of this is to have a map
from types to evaluators—in effect a language whose operators are type names
and whose operator implementations are type-specific evaluators. This map is
the type-evaluators field of the closure structure, as mentioned in sections ??
and ??. It is onto this form which, after experimentation, the implementation
in this thesis settled.

7.2 The structure of each level

Using the model of procedure calling described in section ??, we make towers
in the following overall form:

(defstruct tower

meta-evaluator

operator-shadow-map

type-shadow-map

base-level

standard-evaluator-closure)

where the meta-evaluator field is the procedure that makes the tower run, and
the shadow-maps are used by the meta-evaluator as described in section ??, as
is the standard-processor-closure. The base-level is the first level in the
tower—the application level that the tower eventually interprets.

Within the tower, the form of a level is:

(defstruct level

tower

call-record-stack

template-closure)

The tower component allows anything that has access to the level to access
the meta-evaluator (and hence the meta-tower) of the level. This is one of
several cycles of reference within the tower, that make it possible to go from
one part of a reifier’s result to another, as well as being used by the evaluator
and meta-evaluator in evaluating the tower. The call-record-stack is the
succession of saved procedure activations, which are saved as closures, and the
template-closure is a closure which is copied when a new closure is to be
made in that level, before filling in any of its slots with more specific values.
For example, it has as its evaluator by default the standard evaluator of that
tower.

In each level of the tower, the call stack is made up of closures, each of the

7.3. THE STANDARD EVALUATOR CODE 91

following form:

(defstruct closure

evaluator

type-evaluators

language

procedure-expression

continuation-expression

values

lexical-environment

dynamic-environment

original

level

number)

The evaluator closure, the type-evaluators, language environments, the
procedure- and continuation-expressions, and the values and lexical-
and dynamic- environments components of the closure are as already explained.
The original is the closure of which this one is an instantiation. It is used by
the meta-evaluator to find whether the closure is one that it can interpret di-
rectly, as explained in sections ?? and ??. If the closure is changed by reflection,
its original field is altered to point to the closure itself, so that, if the closure
had been shadowed, it will no longer be recognized as being shadowed (since
the shadow will no longer apply). The level is the level of which this closure is
part. Not only does this give access to other parts of the level, but also through
the level it gives access to the tower and thence to the meta-tower. The number
is there to identify the closure, for the implementor’s convenience. It is a reliable
way of testing whether two closures are the same. The number is issued from a
counter when the closure is created, and when a modified copy of the closure is
made, the new one gets a different number.

7.3 The standard evaluator code

The standard evaluator is a procedure which embodies very little evaluation
strategy and no language-specific features. Unlike a Lisp evaluator, it does not
evaluate the arguments to the procedures that it interprets, as explained in
section ??.

As mentioned in section ??, the standard evaluator is also the general eval-
uator. To combine the rôles of tower level evaluator and general evaluator,
the evaluator switches on the type of its argument. Tower levels are processed,
literals are returned unchanged, variable references are looked up in the environ-
ment, and expressions are evaluated by saving the old expression in the context
level and recursing to evaluate the context level with the new expression tem-
porarily in place of the old one. The switching is done by looking up the name
of the type of the argument, in an environment (the level-type-evaluators of

92 CHAPTER 7. THE STANDARD EVALUATOR

the closure-level of the closure) defining how to evaluate each type of object.
The values bound in this environment are closures taking as their arguments
the thing to evaluate and the level in which to evaluate it. This is very similar
to languages, which bind operator names (effectively node sub-type names) to
specific evaluator closures.

An earlier version of these routines did not have the type-evaluators envi-
ronment, but used a single routine containing a Lisp typecase form, in which a
fixed set of evaluand types were handled directly. This made it hard to change
specific parts of the evaluation strategy through reflection; the new system is at
a better granularity for manipulating parts of the interpreter, just as the “envi-
ronment of operators” view of languages is easier to handle and extend than a
single procedure for handling all types of expression or statement.

Here follows the code of the standard evaluator, written in the dialect of
Lisp that is used as the base language of the system (see chapter ??) with the
additional syntax of labels in square brackets for purposes of explanation (also
referred to in a later chapter).

The standard evaluator itself

The standard evaluator is a simple procedure which selects other procedures
to evaluate its argument according to their type. This means that it has very
little evaluation strategy built into it; the strategy for each type of argument
is defined in a separate procedure, and these procedures are accessed via the
level-type-evaluators environment in the level—a form convenient for rei-
fiers to change the evaluation of particular types of value.

Some of the accessor macros in the functions presented here appear to present
as part of the level fields which the previous text has explained as belonging to
closures. These accessor macros (such as level-language) refer to the corre-
sponding part of the closure at the top of that level’s call stack.

The defining form def-unclosure, which is explained in section ??, con-
structs a closure record, but does not close in all of the usual parts of a closure;
those which are not defined at this time (such as the dynamic environment) are
added to the active copy as the closure is instantiated.

(def-unclosure standard-evaluator (anything background-level)

;; "The standard standard evaluator."

(let* ((type-eval

(lookup (type-of anything)

(level-type-evaluators background-level))))

(if type-eval

(funcall type-eval anything background-level)

anything)))

The standard evaluator is called with two arguments, the thing to evaluate

7.3. THE STANDARD EVALUATOR CODE 93

and the level which to use as the context for that evaluation.
It finds the type of the evaluand and looks it up in the level-type-evaluators

environment of that level to produce the closure used to evaluate objects of that
type. It then calls this closure. If the closure is not supplied, the evaluand eval-
uates to itself.

A more flexible alternative to this strategy, used in a further refinement of
these routines presented at section ??, is for each environment to contain, as
well as its set of bindings, a value to return for any unbound names. This allows
the ifs and their else clauses be removed from the general evaluator and from
the expression (list) evaluator, and also makes it easier to specify (and change
reflectively) the default actions in these cases. Such flexibility, and fine granu-
larity, are to be desired in reflective interpretation systems. Although the larger
number of smaller procedures makes for more overhead in procedure calling,
the potentially smaller amount that must be changed to implement evaluation
features reflectively means that a larger amount will still be shadowed, so at
a small cost to the speed of the fully shadowed system, the overall speed of
reflective evaluation is likely to be better than that of the system with coarser
granularity and fewer procedure calls.

The following functions are called to evaluate particular types of evaluand.
They are bound to the type names by the level-type-evaluators environment
of the level that uses them. Each one takes the evaluand as its first argument
and the level in which to evaluate it as the second argument.

The symbol evaluator

As mentioned in section ??, local variables are represented not by symbols but
by indices into the value list. Symbols are used for type and operator names, and
to name non-local variables. It is the non-local variables that are implemented
by the symbol evaluator.

The symbol evaluator handles both lexical and dynamic environments; if a
symbol is bound dynamically, that binding is used, otherwise the lexical bind-
ing is used. (This is easily changed by use of a reflector to re-bind the symbol
symbol in the level-type-evaluators environment of the tower.)

94 CHAPTER 7. THE STANDARD EVALUATOR

(def-unclosure eval-symbol (symbol background-level)

(cond

((eq symbol t) t)

((keywordp (the symbol symbol))

symbol)

(t

(let* ((dynamically-found

(lookup symbol

(level-dynamic-environment

background-level))))

(if dynamically-found

dynamically-found

(lookup symbol

(level-lexical-environment

background-level)))))))

The symbol evaluator has some Lisp-specific code in it, although these fea-
tures may be used from other languages, and indeed perhaps should, for com-
patibility. The symbol t is treated specially, as are keywords. These two special
kinds of symbol always evaluate to themselves.

If the symbol is neither t nor a keyword, it is looked up in the dynamic
environment, and, if that fails, in the lexical environment, which are stored in
the active closure of the level. (The reference to t here is Lisp-specific, and is
introduced for the implementor’s convenience.)

The list evaluator

The list evaluator evaluates expressions consisting of an operator and its argu-
ments (if present). Although its arguments are different, it is similar to Lisp’s
apply procedure. It also implements the implicit funcall used by Lisp and some
other languages—a feature which a reifer could remove by rebinding the list
entry in the level-type-evaluators environment of the level. It implements
the implicit funcall by tagging funcall onto the front of the expression if the
operator is not found. The current closure’s language’s definition of funcall
will then be used to do the work of the procedure call.

7.3. THE STANDARD EVALUATOR CODE 95

(def-unclosure eval-list (list background-level)

(if (null list)

nil

(let* ((operator-name

(expression-operator list))

(operator

(lookup operator-name

(level-language background-level))))

(if operator

[operator] (funcall operator list background-level)

[funcall] (with-changed-level background-level

(:continuation-expression (cons ’funcall list))

(standard-evaluator

background-level

background-level))))))

List evaluation is central to the evaluator, as this is where operators and
procedures are applied to their arguments.

As with symbols, a Lisp-specific feature appears: by an effect of the Lisp
type system, nil appears as a list, and always evaluates to itself.

If the list is not nil, the operator name of the expression is extracted, at
[operator], and is looked up in the language of the level to produce a closure,
which is evaluated to implement that operator.

Note that this is very similar to the action of the type lookup and evaluation
in standard-processor above. The operator may be seen as being the type of
the expression.

If the operator is not defined, the funcall operator is used to create a new
stack level in which to try to run a function of that name. This is commonly
useful, as most languages allow calls to be made without an explicit call operator;
it is however to some extent a Lisp-specific feature.

The call to funcall is made by making a temporary modification to the cur-
rent level with the name funcall prepended to the expression, at [funcall].
Such temporary changes are made using the construct with-changed-level
which takes as arguments a level on which to work, a list of changes to make
to components of that level, and a block of code to run having made those
changes. After running the argument code, it undoes the changes made at the
start, and returns the result of the argument code. It is an operator within the
tower, and in the meta-evaluator, it is a Lisp macro, which is presented and
explained in section ??. Using the existing level rather than a fresh copy has
two advantages: it means that changes made by reflection within the argument
code persist outside the dynamic extent of this construct; and superfluous levels
are not created (they would add to the load on the garbage collector).

96 CHAPTER 7. THE STANDARD EVALUATOR

The string-char evaluator

Our implementation uses string characters not as literal characters but as local
variable references. (This is because the underlying language, Common Lisp,
does not provide for distinctly tagged integer types. Characters were a conve-
nient type to purloin for variable indices.)

(def-unclosure eval-stringchar (char background-level)

(nth-value (char-int char)

(level-values background-level)))

For efficient access to the values list, we use string characters for the indices
into it. (This is because in the underlying Lisp system this is the only distinctly
tagged small integer type; we want ordinary integers to evaluate to themselves,
as literal constants.)

The local variable references evaluator

String characters suffice for most variable references, but we provide a mecha-
nism for using integers in general for this. The presence of two local variable
mechanisms rather than one brings no overhead (apart from the behaviour of
the environment mechanism, if that is slower for environments containing more
bindings—see section ??), since it is just another binding in an environment.

(def-unclosure eval-lvr (lvr background-level)

(nth-value

(local-variable-reference-slot-number lvr)

(level-values background-level)))

Local variable references beyond the range of character numbers are referred
to by the number stored in a local variable reference structure. This is very
rarely used!

The level evaluator

This is present largely for historical reasons; various parts of the evaluator passed
levels around (similar, in some ways, to continuation-passing style [?]), but most
of these are now work in other ways. The evaluator is retained as a way of
splicing two levels together and evaluating the result. It is still used in calling
external interpreters, where levels do meet in such a manner.

7.3. THE STANDARD EVALUATOR CODE 97

(def-unclosure eval-level (arglevel background-level)

(standard-evaluator

(level-current-expression arglevel)

arglevel))

A level is split into two parts to make it appear in the appropriate form to
pass back to the central evaluator routine.

The closure evaluator

The closure evaluator constructs a level using the expression and language of
the argument closure (which should be kept together) and the other components
from the level providing the context.

(def-unclosure eval-closure (closure background-level)

(with-changed-level

background-level

(:evaluator (closure-evaluator closure)

:language (closure-language closure)

:procedure-expression

(closure-procedure-expression closure)

:continuation-expression

(closure-continuation-expression closure))

(call-meta-evaluator

background-level)))

The other evaluators just pass the arguments straight through:

(def-unclosure eval-string (string background-level)

string)

(def-unclosure eval-integer (integer background-level)

integer)

(def-unclosure eval-nil (the-nil background-level)

the-nil)

A closure is evaluated by splicing it into the current level, preserving the
parts of the closure that must be kept together; the expression and the language
must match because the expression is written in the language.

98 CHAPTER 7. THE STANDARD EVALUATOR

7.4 The essence of interpretation

The functions standard-evaluator and eval-list, roughly equivalent to Lisp’s
eval and apply, are very similar in structure, and a symbol evaluator (shown
here for a slightly simpler system) can be constructed that is very similar to
these two.

By extracting the common parts of the procedures, It is possible to construct
a procedure which performs any of their functions, being passed as arguments
suitable structure accessor procedure as well as the arguments for any of the
procedures above.

Using this function to create the general evaluator yields the following code:

(def-unclosure standard-evaluator (thing level)

;; "The standard evaluator."

(boojum thing level ’type-of ’level-type-evaluators))

standard-evaluator is the general evaluator, which selects an evaluator ac-
cording to the type of its argument.

If called with an evaluand of a type for which there is no evaluator defined,
the evaluand will typically evaluate to itself, the level-type-evaluators environ-
ments returning the identity function as the unbound value.

The in-line insides of the previous form of the evaluator have been replaced
by a call to a function very similar to the old in-line code, but parameterized
to allow them to be used in other ways in the evaluator. For reasons that may
become clearer later, this function is called the boojum function:

(def-unclosure boojum (thing level selector env-selector)

;; "Parameterized evaluator kernel for mixed languages."

(funcall (lookup (funcall selector thing)

(funcall env-selector level))

thing level))

The arguments thing and level are as for the evaluator presented earlier in this
chapter. The two extra arguments are structure or attribute accessor functions:
selector selects an attribute of the thing to evaluate, which is used as the key
for finding a more specific evaluator; and env-selector finds a part of the level
in which to use that key for lookup.

Unlike the evaluator presented earlier, there is no explicit default case han-
dling (for example, for types of evaluand for which no evaluator is defined).
This is provided by having the lookup function return a suitable default value
on being called with an argument that is not bound in that environment. This
is a property of the environment used, and requires the environment system
to allow the unbound value for an environment to be specified as part of the
environment.

7.4. THE ESSENCE OF INTERPRETATION 99

boojum is called in the following ways to make up parts of the evaluator:

(def-unclosure eval-list (list level)

(boojum list level ’car ’level-language))

eval-list evaluates parse-tree nodes consisting of an operator with a (pos-
sibly empty) list of argument sub-expressions. The unbound value in level-
language environments should be the funcall function—which can look much
like eval-list above:

(def-unclosure op-funcall (list level)

(boojum ’funcall level ’identity ’level-environment))

The symbol evaluator is defined without using boojum, although it could use
it:

(def-unclosure eval-symbol (symbol level)

(lookup symbol (level-environment level))

;; could have been:

;; (boojum symbol level ’identity ’level-environment)

)

This only allows for one environment, rather than the dynamic and lexical ar-
guments of the evaluator above. However, they could be provided by binding
each name to a function that must be evaluated to return a value (functional
representation of environments, mentioned in section ??, is sometimes used
in experimental Lisp systems[?]), and having a the unbound value in the first
environment return a value that makes a call to the lookup in the second envi-
ronment. These functions may, of course, be based on calls to boojum.

The rest of the functions do not have any need to call boojum, and are just
as in the other version of the evaluator.

In all the evaluator code using boojum above, only the following functions
are used:

• funcall

• lookup

• type-of

• level-type-evaluators

• car

• level-language

• identity

100 CHAPTER 7. THE STANDARD EVALUATOR

• level-environment

• aref

• level-value-list

Most of these are structure accessors, so if we regard those as being just
two operators (type-of being distinct from normal structure accessors), this
reduces it to

• funcall

• lookup

• type-of

• structure-access

• identity

• aref

which is a total of six distinct operators, of which two (funcall and lookup)
could be fairly complicated, and the rest are very simple.

It is my contention that the boojum function represents a refined principle
of interpretation, going (in terms more from philosophy than from Lisp) from
a value of some kind to a description of how to find the meaning of values of
that kind, and applying that meaning function to the value, in context, to reach
the meaning. It is, in fact, a form of the essence of sentence, which, on further
reflection, may be also the sentence of essence.

A specialized form of boojum, snark, is presented in section ??.

7.5 Evaluation strategies

Because the evaluator is parameterized by the rest of the closure of which it is
the evaluator, the code presented in section ?? is all that the structure of our
reflective system requires of the evaluator (other evaluators may add features
such as tracing, but the skeletal function is the same). The evaluator does
not, by itself, do recursive descent of the expression tree. Sub-expressions are
passed to the evaluator (generally, but not necessarily, the same evaluator) by
the operator definitions when they need their arguments evaluated. Note that,
unlike Lisp, we do not evaluate functions’ arguments for them automatically.
The evaluation is more like Lisp’s special form evaluation. This is because,
while for function definition it is normally desirable to have the arguments
evaluated, here we are defining language constructs, and will usually require
more control over evaluation. Conditionals are the classic example of a construct
with such requirements. An alternative to this evaluation strategy is to quote
argument sub-expressions, with quotes that are not stripped by evaluation—the
handles of 3-Lisp [?]. These two strategies are equivalent, since the stripping of

7.6. THE EVALUATOR AS A LINK BETWEEN LEVELS 101

handles is done by explicit evaluation. For convenience, Lisp-like evaluation for
defined functions may be introduced by a suitable function-defining macro (see
section ??, page ??), which inserts the argument-evaluation code (see section ??)
at the appropriate point.

7.6 The evaluator as a link between levels

The evaluator links the parts of a level, since it is the part that calls the other
parts. The linking is as much a protocol between the components as an active
part of the computational mechanism. Since the evaluator of one level runs at
the level above, it also determines the protocol for communication of information
and control up and down the tower.

It would be possible to have levels of a different form in a tower, so long
as they support the same protocol. In this case, the only requirement on each
interpreter level is that it must provide an evaluator that can be called to in-
terpret the level. For consistent support of reification and reflection, each tower
level should use the standard format of closure in full.

Relaxing the rules to require only the maintainance of interpretability along
the tower allows greater diversity. For example, a level written in a language
difficult to represent with a parse tree and an environment of operators could
use some other form of closure, as long as that closure has an evaluator, and
can process the level below.

Since such non-standard closures do not allow the level above them to provide
reification data of the commonly expected type (that is, a normal closure), they
spoil any assumptions about the universal applicability of the operations we
provide for the handling of closures. The usual form of closure appears to be
flexible enough, and we will refer to that form only from here on.

7.7 How Lisp-like operators evaluate their argu-
ments

The operators that always evaluate all their arguments (just as Lisp functions
do) may do so by calling a general expression evaluator provided in the system,
that evaluates all the argument sub-expressions of a given expression—that is,
all those other than the operator.

To evaluate each argument, the evaluator of the current level is called. This
is done through the form evaluate-by-evaluator-of-level, which in practice
allows a short cut to be taken in common cases of the evaluation. This form is
presented at section ??, page ??.

The argument expression evaluatoris provided as an operator in the base
language in Platypus. For efficient execution, it is shadowed by a corresponding
procedure in the meta-evaluator. Its code is as follows:

102 CHAPTER 7. THE STANDARD EVALUATOR

(defun eval-sub-exprs (expr level)

"Evaluate each sub-expr (except the first) of EXPR in

the context of LEVEL. The result is a list."

(let* ((results nil))

(dolist (x (expression-tail expr))

(push

[eval] (evaluate-by-evaluator-of-level

x level)

results))

(nreverse (the list results))))

This may be called by operators which require all of their arguments evaluated
in left-to-right or unspecified order. For example, arithmetic operators typically
will do this. The actual evaluation of each expression occurs at [eval], which
evaluates a sub-expression in the context of the current level, using the standard
evaluator, which is assumed to be available as an operator (or a function sub-
stituting for an operator) in the level. The results of the evaluation are pushed
onto a consed stack, and this is reversed to make the overall result, which is a
list, leftmost sub-expression’s result first, suitable for use as the last argument
to a Lisp apply call.

Operators requiring explicit control of sub-expression evaluation may call
the same function used by [eval] directly:

(defun op-if (expr level)

(if (evaluate-by-evaluator-of-level

(nth 1 expr) level)

(evaluate-by-evaluator-of-level

(nth 2 expr) level)

(evaluate-by-evaluator-of-level

(nth 3 expr) level)))

7.8 Summary of the standard evaluator

The evaluator is the kingpin of a level. It links the parts of the level to each
other by using them to evaluate the level, and links adjacent tower levels by
making it possible to shift data from one level to another. Its form is tied to
the form of the tower level type.

Each evaluable infinite tower (in the scope of this thesis) eventually reaches
a repetitive stage (termed the boring stage by [?]), the procedure running in
each of these identical levels being known as the standard evaluator level.

The standard evaluator is a fairly small and skeletal procedure, needing, in
its most refined form, only six operators in its definition, most of those being
for structure handling. The rest of the evaluator is defined separately, partly in
individual operator definitions, and partly in some general evaluator procedures

7.8. SUMMARY OF THE STANDARD EVALUATOR 103

that may be called by operator definitions. These general procedures are used
for evaluating arguments to operators. To do this, they invoke the evaluator
and language mechanism to do the evaluation in the appropriate context.

The concise form of the standard evaluator may be seen as a distillation of
the essential matter of a programming language interpreter (independently of
any particular language). This may be refined further to a procedure which
implements several of the main parts of the evaluator. This procedure consists
of three procedure calls and one environment lookup.

Who is as a wise man? and who knoweth the interpretation of a thing?

Ecclesiastes 8:1

104 CHAPTER 7. THE STANDARD EVALUATOR

Chapter 8

Mapping linguistic and
semantic features onto the
reflective system

Having produced a model of computation on a reflective theme, we now examine
its use in modelling existing computing systems and thereby in re-implementing
existing languages with the addition of reflective features and mixed-language
working.

Our reflective core system is concerned mainly with program structure and
control, and makes no attempt to cover such facilities as arithmetic. These
must be assumed to be available at ground level. We can build on such ground
level facilities, but do not attempt to describe them, instead leaving them to
be described by conventional mathematical means (for arithmetic) for example.
Likewise, input and output are not covered by our system, but must be made
available in some form from the ground level. These facilities tend to be similar
in most languages; they depend not so much on the language as on the host
computer system. However, input could be seen as a form of reflection, putting
into the system data from outside it, and output as a form of reification, copying
data from inside the system for things outside it to use. If such communication is
done with another such system, it may be seen as a form of co-tower relationship,
as mentioned in section ??.

As well as implementing the immediately visible constructs of a language,
reflective operators may implement and control the infrastructure of a language
system, such as the binding of values to symbols.

8.1 Procedure application

We take procedure (or function) application as the most fundamental facility to
describe. Like Lisp, we can claim a distant connection between our procedure

105

106CHAPTER 8. MAPPING LINGUISTIC AND SEMANTIC FEATURES ONTO THE REFLECTIVE SYSTEM

(closure) application and lambda reduction.
Although, as explained in section ??, our procedure application does not im-

plicitly evaluate arguments, it is in many ways similar to that of Lisp or Scheme.
As well as using closures as procedures we can use them as continuations [?] and
as meta-continuations [?]. A meta-continuation is to a tower as a continuation
is to a stack. It represents the frozen state of a tower, much as a continuation
represents the frozen state of a process. We will use the term meta-continuation
both for the continuation of a simple tower, and for that of a meta-tower of any
dimensionality.

The result returned by a reifier is always either a meta-continuation or part
of one. Because meta-continuations are values of an ordinary structured type,
programs can manipulate (or create) them just as they do any other data; this
manipulation is not reflection, and has no effect on the live state of the tower.
Reflection occurs when a meta-continuation is explicitly made into the new
tower state. By calling and passing meta-continuations, co-routine-like towers
(co-towers) may be implemented. Indeed, any form of flow control may be done
by reifying, modifying and reflecting meta-continuations, although this is not
necessarily the best or cleanest way of implementing features; if it maps poorly
onto the implemented language’s own model of computation, it may be quite
obscure, and not make it at all easy to handle the reified data.

8.2 Reflective and non-reflective calls

There are two classes of procedure call, between which it is important to distin-
guish:

• the non-reflective call, which adds an activation record to the stack within
the current level

• the reflective call, which adds a level to the tower

In this way, the tower is the call stack for reflective calls.
In implementing Lisp on such a reflective substrate, non-reflective calls can

be used to implement Lisp’s procedure calls, while reflective calls can be used
to implement Lisp’s special forms. This is covered in detail in [?] and [?].

It is natural, in writing programs in the base language of such a system, to
make all calls reflectively, so that each procedure called can be reified as a full
tower level in its own right, with all the information being available directly.
Also, intuitively this seems right; it makes the power of reflective calls available
at every call, as well as organizing the arguments into a regular form, in which
the argument passed is always the overall state. The callee then extracts the
information it needs from agreed places in its single argument, which for a
traditional call means from the top of the value list.

For the design of new languages, the distinction between reflective and non-
reflective calls seems artificial, and the provision of non-reflective calls unnec-
essary, when reflective calls are always available. Using just the one form of

8.2. REFLECTIVE AND NON-REFLECTIVE CALLS 107

call throughout makes the tower into a simpler structure than is possible with
two types of call. Unfortunately, it is not possible to abandon non-reflective
calling and still implement most existing languages smoothly, because their de-
signs typically assume that everything exists at the same level; while this would
not prevent our reflective model from being used for interpretation, it would
make the results of reifiers be a poor match to the language’s own model of
computation, because extra tower levels would appear that would not map onto
any level shift apparent in the source language. Since one of the aims of this
development is to allow programs to extend the languages in which they are
written, this is worth avoiding.

Procedure calls may done implicitly by the standard interpreter, using the
funcall operator, if an operator definition is not found, as explained in sec-
tion ??. When this happens, a level is constructed which will run the funcall
operator on the procedure to be called. The default funcall action (which this
operator is expected to provide) should evaluate the arguments to the proce-
dure, thus making the normal calling by call-by-value. Call-by-name is nearer
to the reflective calls mentioned above, as the information structure of the ar-
gument will not have been collapsed down into its simplest form, but will be in
its original form, which names the value.

If this automatic evaluation of arguments is required, it must be provided
by the routines that read programs from the input files and convert them into
parse trees. It is very simple to embed each procedure in the user program in
a standard piece of code which calls a procedure which evaluates each element
of the calling expression, putting the results onto the value list in turn, before
calling the procedure body.

The procedure calling mechanism in our system is in general based on that
of Lisp, while also being designed with other languages in mind. It is a fairly
primitive operation: features such as choosing different procedure bodies ac-
cording to the form of the argument list (useful for ML, for example) are not
provided; they must be moved into the bodies of the procedures that need them.
This implies that some re-arranging may be required to go from source code in
such languages to our common parse-tree form of procedure bodies. While this
may make the reified forms of procedures less natural in some cases, it also
makes them common, so that a program in any language can understand data
representing reified programs from any other language. With a suitable choice
of operators, it should usually be possible to find a reasonable compromise; for
example, in ML, procedure bodies might always have as their top-level oper-
ator something that chooses which part of the procedure to run, according to
the arguments list, and have as the sub-expressions of that top-level expression
an alternation of guard clauses and original definition bodies (a bit like Lisp’s
COND construct). Worse mismatches than this occur with non-deterministic
languages, as covered in section ??.

Open-stack languages are easily accomodated, as the design of the stack
shares the local data section between caller and callee—a little like register
windowing in CPUs such as the SPARC. For languages which view the local data
as a stack, the top item is what other languages regard as the first argument.

108CHAPTER 8. MAPPING LINGUISTIC AND SEMANTIC FEATURES ONTO THE REFLECTIVE SYSTEM

This conveniently allows procedures with a variable number of arguments to use
the earlier arguments to decide how many arguments to use. It does, however,
mean that such things as Lisps’s &rest and &optional argument control must
always be implemented with the help of the caller, so that the extent of the
arguments to a particular call is always known; it is not possible to say “the
rest of them” or “all of them” where a local stack is shared without distinction
between all levels of procedure call; some form of marker must be used.

This is a problem which requires further investigation, as it is undesirable
for a caller to have to know whether a particular callee requires a marker at
the end of its argument list. Probably the best solution is for the marker to be
used always, in which case the funcall procedure and any equivalents (such
as apply) must always supply it (which is no trouble) and all procedures must
understand it in receiving their argument lists. It is then appropriate that they
leave it there, to mark the end of the result list—some languages, including
Common Lisp [?,] and PostScript [?,] allow multiple results—for the funcall
procedure to remove when the callee has returned. Non-local control transfers
(throw, longjump) must also be able to work with these markers.

8.3 Flow control

In a language in which all calls are by value, it is not possible to implement a flow
control construct using a procedure written in that language (at least, at that
level of interpretation) except by quoting its arguments (in Lisp terminology)—
in which case the new construct is not on a par with those initially built into
the language, which require no quotation.

The few traditional language designs and implementations that have ad-
dressed this problem have used two techniques: macros, and call-by-name (fexprs,
in Lisp). In both of these techniques, the body of the construct is not evaluated
before being passed to the procedure, but is passed as a piece of program text.
A macro transforms that text to another text, which is used in its place, while
a fexpr performs directly the action denoted to it by the text.

In many languages, macros are defined in a part of the language that is
separate from the rest of the language; the #define construct of C is a good
example—it may even be handled by a program separate from the C compiler.

These macro languages are unusual in having no interpretation semantics of
their own—they are semantic parasites on their host languages. This separation
may be taken as a form of mixed-language programming.

Lisp, however, uses its main language for macro expander functions; to tailor
further its suitability for this, it has provided a feature specifically to help with
this, the back-quote.

Conditionals

The implementation of conditional operators requires conditional operators in
the language used for the implementation, and so conditional operators of some

8.3. FLOW CONTROL 109

kind must be present in the ground interpreter. The ground-level conditionals
may be described in conventional terms:

(if abc) ≡ λ(abc).b when a = true (8.1)

(if abc) ≡ λ(abc).c when a = false (8.2)

but the aim of our system is not to make these attempts at absolute state-
ments but to describe each level in terms of another level. So instead of the
conventional description above, we use our intensional description:

in which the fundamental conditionality is transferred to another level, and
thence infinitely far away. Thus, it, like input, and random numbers, is a feature
that we can use, but cannot generate. So, to use conditionality, a closure must be
linked with integrity over conditionality to a grounded interpreter that provides
conditionality (a conditionality termed ef (etensional if) by Smith).

Since we want the standard ground interpreter to be very simple (so that
it is a minimum pinning-down to Turing-computable reality) we will make it
provide only one form of the conditional:

if a
then b
else c

and other levels and languages can build their own conditional forms from this
as needed, such as Lisp’s cond.

Iteration

Iteration, involving destructive assignment to state, is often regarded as unde-
sirable in language descriptions, and so represented with cleaner tail-recursion.
We can use tail-recursion, or we can represent it as side-effects. Since in repre-
senting it as side-effects we must use an iteration construct in the level above, we
present a paradox by saying that at one level it is iteration by side effects, but
at the next level it could just as well be represented indirectly by tail-recursion.

In the terms introduced in section ?? and described in [?] and in section ??,
if we represent iteration as iteration, we use jumpy continuations, whereas if
we make each loop into a tail-recursive procedure without converting the tail-
calling to tail-jumping, we can use pushy continuations. Since a pushy contin-
uation with tail-reflection removed is equivalent to a jumpy continuation (see
section ??), for normal program interpretation this does not make much differ-
ence: programs will behave the same way.

In practice, converting iteration into tail-recursion may make reflection into
loop control variables more obscure, because it separates loop bodies into sub-
procedures (in-line lambdas, in Lisp terminology). In practice, real iteration in

110CHAPTER 8. MAPPING LINGUISTIC AND SEMANTIC FEATURES ONTO THE REFLECTIVE SYSTEM

the interpreter is a closer match to the semantics of many target languages, and
so we will generally use that. Also, it may be confusing to find the wrong number
of call levels on the control stack, although programs handling reified program
data (perhaps through a library) must be able to understand the equivalence
between tail-recursion and iteration.

Jumps and continuations; non-local exits

Using the grand jumpy reflector (the reifier that returns a simple snapshot of
the whole of the current state and code—see sections ?? and ??) that assigns
the entire state of the system from an arbitrary value that an arbitrary level has
produced, we can implement any kind of flow control structure. For example,
a GOTO may be implemented by capturing the state, changing the continuation
expression of the current closure (see section ??) and making that modified
state the new state. A non-local exit may do likewise, but also take some stack
frames away entirely before changing the expression of the current continuation
closure of the last remaining one. A reflective system permits another form of
non-local exit in which several levels of the tower may be spanned. This exit
may carry with it, to the catcher of the exit, information from further into the
tower or meta-tower, thus being both an exit and a reifier. This can be used to
pass back to a program errors in the interpretation of that program.

8.4 Variables, bindings and assignments

Assignments are straightforward, since we can change any part of the state of
the system through reflectors. To make an assignment to a variable, we simply
write into the appropriate slot in the structure holding the current level’s data.
Each level’s data is stored in the values-list and environments of the closure
representing that level.

Local variables are referred to by indices into the value list (from the growable
end of it) and non-local variables by symbols which must be looked up in the
environment (which could be a hash table, for example). Binding a local variable
means making a new local variable to hold values referred to by that name, while
binding a non-local variable means storing its old value in a saved bindings chain
associated with the environment’s lookup table.

Variable access in conventional languages is often compiled in-line, and is
perhaps a good example of how levels could be merged (‘mixed’ [?] [?]) to
produce programs with the reflection partly compiled out—variable access, al-
though here defined in terms of reflection, is an operation that can be done
non-reflectively, and so is a candidate for compiling out on a suitable combined
reflective-and-plain system, as suggested in section ??.

8.5. TYPES 111

8.5 Types

On the whole, we have assumed that a dynamic typing system (see chapter ??)
is available for use throughout the system, and that it is provided by the ground
level, and is consistent throughout the system.

Static typing is, of course, possible; the values are still tagged as normal,
but a particular language’s input parser may have checked the types as it builds
the parse tree which we execute.

It is, in general, desirable to keep the same type system for all levels (for ease
of passing data between levels at reflection and reification) but it is possible for
a level to implement special typing requirements for the level below it. which is
acceptable except in first-dimension level shifts, where it makes the underlying
implementation repeatedly translate data as it moves it between levels—work
which is best avoided when much data must be passed between levels.

In a shift in the second dimension, that takes us to the system that imple-
ments non-reflectively the first tower, it may be commonly useful, and desirable,
to change the type system to help with modelling the representation scheme used
in the first tower.

The reason for this difference is in the meaning of each kind of level shift.
The usefulness of changing the type system is for implementing the type system
of another tower, whereas within a tower it is useful to have the same type
system throughout, to make it simpler to pass data between levels.

8.6 Objects and messages, and actors

Reification and reflection are useful in object-oriented systems, so that an object
processing a message can invoke further methods by sending other messages to
its self (that is, to the same object). This self-reference is a form of reflection.
In the language structure represented here, we can model each object or actor
by a closure, which closes the programmed actions (methods) of the object with
the environment within which it originated. When the actor receives a message,
the closure has its expression modified to contain the message, and is then
evaluated.

8.7 Parallelism

Languages with parallel evaluation constructs [?] may be implemented using
our model of interpretation, with operators that use jumpy reflectors to switch
evaluation contexts. For example, to implement Occam’s [?]par construct, a
par operator could be written to create new contexts (threads of execution)
and put them onto the list of contexts being executed, and the operators that
rendezvous between threads (input, the ? operator, and output, the ! operator)
would perform the context switching required; ? would transfer control to the
thread from which the input will come, and ! would transfer control to the
thread which will receive the output.

112CHAPTER 8. MAPPING LINGUISTIC AND SEMANTIC FEATURES ONTO THE REFLECTIVE SYSTEM

Our evaluation framework has not been designed with genuine parallel eval-
uation in mind, but it could be added in the same way that it can to any other
serial execution system.

8.8 Declarative languages

Declarative languages do not map well to the model of interpretation that we
use here. One way of implementing them on it is to procedurize the programs,
so that they run in a manner more like that of procedural languages [?] [?]. For
example, the clauses

fish(A) :- chondroicthyes(A);

fish(A) :- osteoicthyes(A);

procedurizes to make

(defun fishp(A)

(or (chondroicthyesp a)

(osteoicthyesp a)))

However, with the need for backtracking and cuts, the translation is more com-
plicated than this—one approach is to use Continuation Passing Style [?] [?]
[?]. Another is to write an evaluator that implements them in any convenient
manner, providing suitable procedurized operators in its language—it need not
use these operators for execution (it would have alternative means for doing
the real evaluation), but should provide them to allow program analysis and
compilation. Closures in this form should still support the protocol required
for tower levels, so that they can be used as evaluators, and can be interpreted
by ordinary evaluators. There are further problems arising from the nondeter-
minism commonly found in declarative languages. It is in principle possible to
match this with the rest of the system by writing a special version of the evalu-
ator, which handles collections of results (non-deterministic results) as though
they were single values, and makes some kind of translation when transferring
data in out of this world. However, this is almost certainly of very limited
usefulness—for example, what should the + operator do when asked to add two
such non-deterministic values (possibly with each of them having a different
number of possible deterministic values)? A better solution is probably to pro-
vide extensions to such languages to improve their interface with conventional
languages, for example using streams [?, Chapter 21] or generators [?] or some
other form of lazy evaluation to work through successive possible results.

Another approach requires specialized libraries for programs that want to
call across this divide—bearing in mind the specialized application that such
programs are likely to have, this may well be appropriate (or at least unobtru-
sive) but it is not the purely transparent cross-language calling that we generally

8.9. CHANGING THE IMPLEMENTATION OF FEATURES DYNAMICALLY113

hope to provide.
One way in which Platypus does facilitate cross-calling between unification

languages (a subset of declarative languages) and procedural languages is that
the environment of the continuation closure may be used as the unification en-
vironment, and the value list is a suitable common form of argument/result list.
When a procedure in a unification language calls one in a procedural language,
the instantiated unification variables are available to the procedural procedure
as normal dynamic variables, and when a procedural language procedure calls
a unification one, bindings made by the procedural code appear as instantiated
variables to the unification code.

8.9 Changing the implementation of features dy-
namically

As well as being useful for the implementation of language features, reflective
programming techniques may be used to alter the implementation as the pro-
gram runs. As an example of this, I implemented a procedure to evaluate a
form using deep binding instead of the semi-shallow binding that Platypus nor-
mally uses. There were three parts to this change: new implementations of the
binding and assigning operators (let and setq in the Lisp-like base language);
a new implementation of the type evaluator for symbols (variable names); and
an adaptor function to evaluate a form given as its argument, with conversion of
environments between the standard representation and the new one happening
before and after the evaluation itself. Some of the code used is presented in the
following paragraphs.

Before reading this re-implementation of variable access, it may be instruc-
tive to consider how much effort would be involved in making the same change
to a non-reflective evaluator, or to a reflective evaluator that does not use the
evaluator, type-evaluators and language structure used in these experi-
ments.

First, the new lookup and binding procedures that are reflected in. A lookup
procedure, using association lists, is defined as follows, to be inserted by reflec-
tion. (The definition is in two parts, to avoid duplicating code. The first routine
allows for environments to be represented either by association lists or by the
original form of environments, to avoid having to scan the entire meta-tower
system below the current point to convert all environments. It would be more
typical of our reflective system to use an environment instead of a typecase, but
that would make it more complicated to set up than is warranted for a presented
example.)

114CHAPTER 8. MAPPING LINGUISTIC AND SEMANTIC FEATURES ONTO THE REFLECTIVE SYSTEM

(defun new-lookup (item env)

(typecase env

(environment

(lookup item env))

(list

(cdr (assoc item env)))))

This routine is analogous to the normal symbol lookup routine presented in
section ??:

(defun new-symbol-lookup (symbol background-level)

(cond

((eq symbol t) t)

((keywordp (the symbol symbol))

symbol)

(t

(let ((dynamically-found

(new-lookup symbol

(level-dynamic-environment

background-level))))

(if dynamically-found

dynamically-found

(new-lookup symbol

(level-lexical-environment

background-level)))))))

and a binding procedure, also using association lists, is defined:

(defun new-bind (name environment value)

(cons (cons name value) environment))

These are reflected in using something that calls the following procedure. First,
it takes apart the data structures used, and saves the old values in variables:

(defun eval-with-typevals-and-ops (level

typeval-bindings

opbindings

form)

(let ((the-closure (level-current-closure level))

(the-old-language (closure-language the-closure))

(the-old-type-evaluators

(closure-type-evaluators the-closure))

(the-language (copy-language the-old-language))

(the-type-evaluators

(copy-language the-old-type-evaluators)))

(set-closure-language the-closure the-language)

8.9. CHANGING THE IMPLEMENTATION OF FEATURES DYNAMICALLY115

then it adds new bindings in the language and type-evaluators environments:

(dolist (this-binding opbindings)

(let ((opname (car this-binding))

(opform (cdr this-binding)))

(bind opname the-language opform)))

(dolist (this-binding typeval-bindings)

(let ((tyname (car this-binding))

(tyform (cdr this-binding)))

(bind tyname the-type-evaluators tyform)))

After that, it evaluates its argument form, and restores the old values of the
language and type-evaluator environments:

(let ((result (eval-in-level form level)))

(set-closure-language

the-closure

the-old-language)

(set-closure-type-evaluators

the-closure

the-old-type-evaluators)

result)))

This provides a general facility for any reflective changes that modify the han-
dling of a particular type of sub-expression or other value; these changes often
require both alterations to the evaluator and to existing operators, and also
possibly the addition of some new operators.

To use this for changing the implementation of non-local variables, it is called
from the following procedure:

(defun eval-with-alternate-bindings-by-type-evals (form)

(progn

(eval-with-typevals-and-ops

(current-level)

’((symbol . new-symbol-lookup))

’((lookup . new-lookup))

(cons ’eval-with-alternate-environment-representation

(cons form nil)))))

This constructs a form to evaluate its original argument form using ’eval-with-altern-
ate-environment-representation, which converts the environments between
the two representations:

116CHAPTER 8. MAPPING LINGUISTIC AND SEMANTIC FEATURES ONTO THE REFLECTIVE SYSTEM

(defun eval-with-alternate-environment-representation (form)

(progn

(let ((closure (level-current-closure (current-level)))

(old-lex-env (closure-lexical-environment closure))

(new-lex-env (environment-to-alist old-lex-env))

(old-dyn-env (closure-fluid-environment closure))

(new-dyn-env (environment-to-alist old-dyn-env)))

(set-closure-lexical-environment closure new-lex-env)

(set-closure-fluid-environment closure new-dyn-env)

(let ((res (eval form)))

(set-closure-lexical-environment closure old-lex-env)

(set-closure-fluid-environment closure old-dyn-env)

res))))

8.10 Evaluation order—strict or lazy

In Platypus, evaluation order is largely defined by the operator definitions, which
call the evaluator to evaluate each argument at the appropriate point. It is, in
principle, possible to write an evaluator that normally returns lazy results, prob-
ably as closures to be evaluated later (or on a separate computer, to provide
parallelism; see [?], [?], [?], [?]) and which evaluates things only when necessary.
However, because Platypus’s model of evaluation allows side-effects anywhere
(including the very general side-effect of jumpy reflection, as described in sec-
tion ??), this does not in itself provide a universal means for lazifying any
existing language! It could, however, be used to implement languages known
not to allow side-effects.

It is possible to get round the problem of implementing languages with side-
effects, using the power and flexibility of an interpretive system based upon
metacontinuations. This may be done by returning lazy results (futures) but
keeping a list of them (that is, of futures that need further evaluation to become
proper values) in a variable of the evaluator of the level above that containing
the lazified program. Whenever a side-effect is about to occur (the evaluator
must monitor for this, by catching all use of primitive (shadowed) operators
that can produce side-effects) all the stored lazy results are evaluated further
toward their real results, and any that finish their evaluation can be dropped
from this list. This way, consistency is guaranteed when side-effects happen,
although the system is otherwise lazy.

If a lazy evaluator were installed at some level in the tower, all levels below
that would become lazy, as no evaluation would occur there until needed. This
is an example of how changes at one level may be pervasive through to all lower
levels (which have no control over the matter—see section ??).

8.11. SPECIAL SUBSTRATE FEATURES FOR SPECIFIC LANGUAGES117

8.11 Special substrate features for specific lan-
guages

Some languages, particularly those that are primarily part of a special-purpose
system, and only secondarily programming languages (for example, expansion
languages for programmable text editors, and graphics languages such as PostScript,
require special features in their implementations that would not be present in
more general-purpose languages. For example, an editor language typically will
have one or more buffers in which to hold text, each with a current point, and
PostScript has a current graphics state (transformation, colour, linewidth, etc),
and usually an underlying imaging system for painting onto a bitmap.

What is the most appropriate place to store such special substrate data?
It is not in named variables at the application program level—the namespace
must be kept clear for the application program to use in its entirity—but neither
may it make the generic evaluator become specialized. The solution is to put
it at the evaluator’s level, using variables named by agreement between the
operators concerned (such as editor-specific or graphics-specific operators)—
observe in the code at section ?? that the core evaluator routines do not use
any non-local variables at their own level.

Difficult substrate features

Some languages require features that are difficult to integrate with the rest of
the system—for example, PostScript’s access permission flags which are a part of
each of its [compound?] values. Theoretically, this could be implemented tidily
by changing the substrate on which the evaluator runs, so that the evaluator
works in a world with the relevant underlying type system, but this does not
seem very practical. For most purposes, such incompatibilities seem quite minor,
and often it may be simplest to tolerate them—for example, to say that all values
always allow reading and writing. (In the trial implementation of PostScript in
Platypus, we cheat, through good chance, on PostScript’s executable and non-
executable (literal) arrays, by representing them as arrays and expressions (Lisp
lists) respectively—thus mapping a non-standard distinction onto a standard
one not otherwise made by that language.)

The need for such substrate features is often connected with the need for spe-
cial types of value. For such types, it may be appropriate to compile procedures
for handling their values, as described in section ??.

8.12 Summary of building languages with reflec-
tion

Our mixed-language interpretation is designed to allow many languages to be
built on top of it. Languages which can be converted readily to a procedural

118CHAPTER 8. MAPPING LINGUISTIC AND SEMANTIC FEATURES ONTO THE REFLECTIVE SYSTEM

form are most suitable for this: procedural and functional languages are easiest,
declarative and rule-based languages are harder.

We assume handling of such types as numbers to be made available under-
neath the implementation of reflection. Reflection does not help to describe
these, anyway, so nothing would be gained were it possible to include them in
the reflective system.

Most conventional language features map readily onto a reflective mixed-
language architecture. Occasionally there is a mismatch, such as it being natural
to try to make all calls reflective (which builds a tower level for each procedure
call).

Using jumpy reflectors (that assign to parts of the state, without saving the
old values on a stack) to change specific parts of a tower allows very natural
implementation of many common language features such as jumps, calls and
assignments.

Reflective features may be used to group together parts of a system, such as
all the operators of a language, for interpretation in a particular way.

As well as any languages implemented on top of the reflective system, there is
a base language which provides reflective facilities and some simple flow control
and calling operators. This is sufficient for running the rest of the system, so
long as all parts of the system are connected with integrity to the base language.

Reflection allows new features to be added to conventional languages, in-
cluding extreme examples such as a non-local exit that goes right out of several
levels of interpretation.

Procedure calls are to some extent built into the evaluator, but other features
are not so much so. Our procedure calling is naturally call-by-name, but call-
by-value may be implemented easily on top of this; such a facility is provided
in a form that is useful to many language implementations.

“Must a name mean something?” Alice asked doubtfully.
“Of course it must” Humpty Dumpty said with a short laugh.

Through the Looking Glass, chapter 6

Chapter 9

A suitable language for the
standard interpreter

9.1 Requirements

What are the requirements for a language for the standard interpreter? Within
the requirements, we can devise a variety of possible languages, but we will aim
for something that is simple, and expressive for a wide range of programs, with
particular emphasis on interpreters.

Computational completeness

The first requirement is that the language must be able to express all Turing-
computable functions. This is usually satisfied through common-sense in design-
ing the language. It is possible to devise computationally complete languages
that are poorly expressive, for example the Turing Machine [?]. However, we
will provide a range of operators more expressive than the Turing Machine (and
working on a basic type system which supports mapping of abstract types to
it rather better than does the Turing Machine Tape). Here are some kinds of
operators that we expect to find in a serious programming language (and even
in a small example language):

• binding

• function application

• recursion

• conditional execution

• operations on objects that are specific to types of particular types (such as
arithmetic), in particular: comparison for equality and ordering; addition,
disjunction; multiplication, conjunction;

119

120CHAPTER 9. A SUITABLE LANGUAGE FOR THE STANDARD INTERPRETER

• optionally: iteration (which may be done with recursion and conditionals)

• assignment

• jumps

• stack manipulation

Provision of operators of all these kinds is sufficient for the implementation
of a wide variety of programming languages, through interpreters written in
a reasonably expressive style. Support for algorithmic and functional styles is
particularly good, and implementation of other styles of language, while not
so succinct, is not particularly cumbersome. Declarative and pattern-matching
languages are the worst fit to our model, and require pre-processing into a
suitable procedure-based representation, as explained in section ??.

I have presented the base language as a form of Lisp, partly because, having
simple syntax, it is a convenient notation for simple new procedural or functional
languages, and partly because the semantics of the base language, and the
operators available, are generally Lisp-like. This follows from Lisp’s origins and
its evolution toward language and other symbolic processing.

Reflectiveness

Our other major requirement for the base language is that it must support
reification and reflection. This needs only two operators:

• grand-jumpy-reifier returns the tower’s state

• grand-jumpy-reflector sets the tower’s state

An implementation for each of these is given in section ??.
Other reifiers and reflectors can be built on top of these, as explained in

section ??, through use of the type system and the function application operator,
for example the main operations on meta-continuations as described (under
different names) in section ??:

• grand-pushy-reifier runs a function with the tower’s state as its argu-
ment

• grand-pushy-reflector runs a function in a tower constructed from its
argument.

Completeness of operators

As mentioned in section ??, the language for a closure must provide all the
operators used in the expression of that closure. This is no new requirement
introduced by the tower. The tower of levels with languages has only made it
possible for this condition not to be satisfied. In a conventional language, all
the operators in the language are always there. Only in a system where the
language can be reflected into can this condition be broken.

9.2. THE IMPLEMENTATION OF THE BASE LANGUAGE 121

Therefore, the base language must include at least all the operators needed to
implement the standard evaluator. This is an extension of the idea of structural
integrity, but applied to interpretation, rather than to the handling, of reified
values. To be useful, it should also include a variety of operators typically useful
in implementing operators of other languages, such as structure field accessors
for the data types returned by reifiers.

It is not necessary for all operators of the base language to be shadowed by
the meta-evaluator, but in practice (for efficiency) they all are. (Operators not
included in the base language may also be shadowed. The only link between
inclusion in the base language and being shadowed is that a computationally
complete subset of the base language, and enough of the reflective operators
to reify and reflect the entire tower state, must be shadowed.) [?] contains a
description of how to derive a minimal set of grounded operators.

9.2 The implementation of the base language

Like those in other languages, many of the operators in the base language will
need to evaluate all their arguments, but do not need to specify in what order
to evaluate them. Arithmetic operators are a good example of this. In the
explanation below, we will use

((lambda (a b c) (+ a b c)) 1 2 3)

as an example.
The most concise way to implement such a family of operators is to split

each operator into three parts:

• An argument evaluator, evaluate-sub-expressions (described in sec-
tion ??), which evaluates each sub-expression of the expression being in-
terpreted for which the original operator was used. In the example above,
this will take the a b c of (+ a b c) as the list of sub-expressions to
evaluate. Since the lambda construct makes local bindings, a, b and c are
local variables, that is, indices into the value list. The value list contains
1 2 3 in the positions a, b and c, and so the result of the sub-expression
evaluation is (1 2 3).

• Primitive operators such as prim+2, capable of doing the basic action on
objects of the relevant type, but not of evaluating their arguments.

• The operators themselves, such as +. These first call evaluate-sub-expressions,
and then map their corresponding primitive operator along the result of
this, and return the result accumulated at the end of the mapping. Thus,
+ will calculate (through iteration, here unrolled for explanation) (prim+2
(prim+2 1 2) 3) as it accumulates its result.

122CHAPTER 9. A SUITABLE LANGUAGE FOR THE STANDARD INTERPRETER

In the experimental implementation Platypus (see section ??) the base lan-
guage and its shadows are set up by a group of Lisp macros platypus-defprim,
platypus-def-control-prim, platypus-def-lispy-prim, and platypus-def--
lispy-expr-prim, which both define the code to be interpreted within the
tower, and name (or even define) the Lisp function to be used as the shadow
outside the tower.

Since the operators structured in this way call more rudimentary operators
such as dyadic-add, these more rudimentary ones may be provided as operators
in their own right; they may be used directly for implementing some languages.
Since they do not evaluate their arguments, the arguments must be fed to them
in a fixed manner—non-evaluation of arguments means they cannot even be
given through varying local variable indices. The values to be processed must
be placed at the end of the values list—the top of the stack—and the operator
called. It removes its arguments from the values list by treating it as a stack and
popping them from it, performs its essential action, and puts any results onto
the end of the values list by pushing them as onto a stack. This form of calling
makes these operators suitable for use directly in a FORTH-like language such
as PostScript—this is done in the implementation of PostScript used here.

9.3 The real set of primitive operators

In practice, many more operators than strictly necessary may be provided as
primitive (shadowed), for efficiency and to make better use of the richness of
the substrate system. The operators provided in Platypus include flow control,
evaluation, arithmetic, data structure manipulation, reification, reflection, and
input and output.

9.4. OPERATORS FOR REIFICATION AND REFLECTION 123

9.4 Operators for reification and reflection

In this section, we look at adding reflective operators to a language, taking Lisp
as our example language. All of this applies to any other language used in our
experimental system; Lisp is the most convenient example language.

The same reflective operators may be provided in any language. Further-
more, since we make all languages equivalent and transparently cross-callable,
and interpretable by the same interpreter, by having common formats for pro-
gram, language definition, and state, a program Pa written in language La may
reify a sub-program Pb (perhaps a library routine called from Pa) written in
Lb, and will receive it in the same form as that it would receive the representa-
tion of itself from a reifier. The operators used will be different, but if Pa does
any analysis of the program, it may use the definitions of the operators of the
language Lb (which is built into the closure of Pb) to find what each operator
does.

Adding reflective facilities to an existing language

Since Lisp’s calls are the same as our non-reflective calls, a common way to add
reflective features to a Lisp system is to add a special form that does a reflective
call, in which a procedure is applied to some otherwise hidden part of the Lisp
system (such as the environment or the stack) along with any other arguments
which are given as normal in the calling form.

This gives us reifiers such as

call-with-environment(procedure args env)

which is called as

(call-with-environment procedure arg1 arg2 ... argn)

but as a callee has an environment and a list of the original arguments supplied
as its arguments, with the interpreter interposing the extra information. In ef-
fect, the interpreter executes

(call-with-environment procedure arg1 arg2 ... argn)

as if it were

(apply

procedure

current-environment

(list arg1 arg2 ... argn))

124CHAPTER 9. A SUITABLE LANGUAGE FOR THE STANDARD INTERPRETER

where *current-environment* is a reifying variable—a variable handled spe-
cially by the evaluator, holding part of the information used by the evaluator in
evaluating the program—holding the current environment.

Here is a sample piece using this style of reifier:

(defun print-environment (reified-environment arglist)

"Print out the environment to a stream.

This expects to be passed two arguments: the environment

of its caller, and the argument list with which its caller

thought it called it. That argument list should have one

element, a stream to which to print."

(format

(car arglist) ; should be a stream

"The caller’s environment is ~S~%"

reified-environment))

(defun env-to-file (fn)

"This uses a reifying call to pass its environment

to a function which will print out that environment."

(with-open-file (str fn :direction :output)

(call-with-environment print-environment str)))

The general case of such a reifier is call-with-level proc (level args),
which is called as (call-with-level proc arg1 arg2 . . . argn) but as callee
receives the level at which it is running and the original argument list, as if it
were called as: (call-with-level *current-level* proc args).

Since the call frame contains a level, the call frame (activation record) of
such a reflective call is in effect a tower level, into which information has been
reified from the calling level.

When using activation records as tower levels, the link to the lower levels is
an ordinary local variable/parameter in the stack frame. The next lower level
for an interpreter must be held in variables of the interpreter anyway, even in a
non-reflective system, as the interpreter must store somewhere the program it
is interpreting. In our experimental implementation, the link to the lower levels
is always in the same place in the level: it is in the second argument position in
the value list of the interpreter, just after the interpreter’s evaluand.

In this form of reflective interpretation, every call (transfer of meaning) to a
lower level must pass that lower level to itself as part of its parameter list. This
is easily accomplished, as the calling interpreter has that information available
for its own use already, although possibly in a different form. All that it needs
to do is include the data in the stack frame that it builds, so that it appears as
if given as an argument to the call.

9.4. OPERATORS FOR REIFICATION AND REFLECTION 125

For reflection, one of a second range of special forms, complementary to the
first one, and characterized by the form (eval-with-<context> <procedure>
<context>) (where <context> is whichever part of the context we wish to re-
flect), calls a procedure given as one of its arguments, with parts of the context
surrounding it being taken from its other arguments. For example, we could have
reflective operators such as (eval-with-environment form environment), which
evaluates form using environment to provide any free variables needed by form,
and (eval-with-arglistform arglist) called funcall in Lisp, or, to be as
general as possible, (eval-with-level form level). For example, this func-
tion

(defun another-level-cons (d e)

(eval-with-level

’(cons d e)

(construct-funny-level)))

returns a cons cell which was constructed by the cons operator of a different
level.

Although these additions to Lisp can provide full reflective facilities, they
present no organized model of non-reflective and reflective calls. Also, they often
(although not necessarily) work in terms of the internals of a normal Lisp system,
which, meta-circularity notwithstanding, is not particularly suited to manipu-
lating language elements as data values. For example, to represent environments
we might conveniently use a-lists, but an abstract type for environment, with
appropriate operators (bind, unbind, lookup, assign, boundp) would be more
appropriate. This is a consequence of the poor support for data abstraction
(that is, just cons cells!) that classical Lisp provides. It seems appropriate to
find a model of computation, and a type system to support it, designed more
specifically for reflective evaluation, and not built around the facilities of one
particular language. Such a system would have a data type representing the
state of a computation, in which type grand reifiers would always return their
results, and in which grand reflectors would always take their arguments. Each
field of this type would also be of a particular type, and these types would be
few and of simple well-defined characteristics.

The type we will use to represent the state of a computation is the interpre-
tive closure, as described in chapter ??, and the types of its fields, as described
in chapter ?? are interpretive closure, environment, expression (or parse tree)
and values list.

Jumpy and pushy reflection and reification

Instead of the two special calls eval-with-level and call-with-level, which
always start new levels of interpretation, we can use alternative, and simpler,
forms of reifier and reflector. In these operators, the state is represented as a
tower. The reifier, which is a procedure taking no arguments, returns the state

126CHAPTER 9. A SUITABLE LANGUAGE FOR THE STANDARD INTERPRETER

of the system as its result, and the reflector takes one argument, a tower, which
replaces the current tower.

These jumpy operators differ from the reflective operations described in sec-
tion ?? in that they assign to the state rather than bind the state. The pushy
reflective operators may be implemented on top of the jumpy ones with the
addition of a stack.

The grand pushy reflector may be implemented as the following macro, which
takes something to evaluate and a level in which to evaluate it, and performs
the evaluation in that context. The variable *tower* belongs to the level of the
current level’s evaluator. The action of reading it is a grand jumpy reifier, and
writing it, a grand jumpy reflector.

(defmacro eval-with-level (form level)

‘(let ((old-levels (tower-levels *tower*)))

(setf (tower-levels *tower*)

(cons ,level old-levels))

(eval ’,form) ; this is implicitly in

; the context of *tower*

(setf (tower-levels *tower*)

old-levels)))

A matching reifier is implemented by the following macro, which takes a pro-
cedure to call and an argument list, and splices onto the start of the argument
list the level within which it will call that procedure:

(defmacro call-with-level (function &rest args)

‘(funcall ,function

(car (tower-levels *tower*))

,@args))

As demonstrated by the procedures above, when used on a conventional ar-
chitecture (that does not provide stack pushing as a primitive) these assigning
(jumpy) reflective operations are more primitive than the binding (pushy) ones,
in the sense that they may be used as part of the internals of the pushy opera-
tors. However, given an interpreter outside the tower, the pushy operators may
also be implemented as primitively, in that they are simply functions that pro-
duce or consume an extra argument before calling a given function, and where
the meta-evaluator handles that argument. (However, on a conventional com-
puter system, all reflective operators are actually jumpy at the exact point of
reflection, as there is a point when control switches from one context to another,
regardless of whether the old context has been pushed onto some kind of stack,
or otherwise stored.)

Each of these two approaches to handling reified execution state uses one of

9.4. OPERATORS FOR REIFICATION AND REFLECTION 127

two kinds of meta-continuations, as explained in sections ?? and in [?]: pushy
meta-continuations, which bind the tower state, and jumpy meta-continuations,
which assign to the state. In activating a pushy continuation, no information is
lost, as the old state is kept on a stack of continuations; while a jumpy contin-
uation discards information, simply replacing the old state with the new one.
These terms may be used to describe both control flow within one level (where
pushy continuations are procedures to be called, and jumpy continuations are
labels to be jumped to) and flow of meaning between levels, where pushy and
jumpy meta-continuations are the two forms of reflection that we have just
described.

Pushy and jumpy meta-continuations may be mixed within one tower, and
even within one level. Viewed as tower-constructing devices, they have rather
different forms. A jumpy meta-continuation destroys tower levels, by replacing a
string of them destructively with a shorter string, or creates them, by replacing
one level with a string of several levels.

A pushy meta-continuation cannot destroy or create levels in the same tower
in this sense, but starts a new tower, orthogonal to the first. (This is as described
in section ??.) The analogy for this in (non-meta) continuations is that a
jumpy continuation modifies a sequence of actions within a procedure, while
a pushy continuation starts a fresh sequence in another procedure. Just as
tail-recursive pushy procedure continuations can be transformed into iterative
continuations, tail-recursive pushy meta-continuations can be transformed into
iterative metacontinuations. Functions for these transformations are given in
[?].

From here on, we will use more systematic naming for reflective operators.
The reifier called eval-with-level above will now be called grand-pushy-reifier,
and the reflector call-with-level will be called grand-pushy-reflector.
The jumpy reflective operations, not given as named procedures above, but used
implicitly in-line, will be called grand-jumpy-reifier and grand-jumpy-reflector.
Here is the code for the two grand jumpy reflective operators:

(proclaim ’(special *tower*))

(defun grand-jumpy-reifier ()

tower)

(defun grand-jumpy-reflector (new-tower)

(setq *tower* new-tower))

Reifying and reflecting specific parts of a level

The grand jumpy or pushy reifier and reflector are the only reflective operations
that we need. However, most of our reflective actions will copy the current
tower, make some change, and make the changed tower become the current one.

128CHAPTER 9. A SUITABLE LANGUAGE FOR THE STANDARD INTERPRETER

To make this kind of activity more convenient, and also to avoid unnecessary
work, we provide some more specialized jumpy reflectors, for changing individual
components of the current tower.

Changing one part of a level’s state usually maps to one operation in a
typical programming language. For example, alterations to the value list can
implement assignment to variables or binding of variables; changing the contin-
uation expression implements a jump or a call. Assignment to the interpreter
has no equivalent in conventional programming languages, although there are
commonly statements to make new procedure definitions (usually statically)
and to implement non-local flow control (long jumps).

Providing separate reflectors for each part of the state stored in the closure
thereby models cleanly the actions that a typical interpreter must implement.
We also provide a collection of procedures for handling the reified values. These
not only make handling these values easier, but also help to maintain consistency
in the tower—not a theoretical consideration, but helpful in avoiding an easy
way of crashing the system.

The reflectors (and, less importantly, reifiers) which affect only part of the
state are as follows:

• set procedure evaluator and procedure evaluator

• set current evaluator and current evaluator

• set procedure language and procedure language

• set current language and current language

• set procedure expression and procedure expression

• set current expression and current expression

• set procedure values and procedure values

• set current values and current values

• set lexical environment and lexical environment

• set dynamic environment and dynamic environment

The reifiers above may be built on top of the grand-jumpy-reifier, and select
a field of the the resulting record. The reflectors are different: they must find
the part of the structure that the corresponding reifier would return, and modify
just that part. In terms of conventional programming language technology, this
is finding the left hand side value (abstract address) of the reifier’s result and
then through it assigning the new right hand side value.

This is more efficient than finding the whole reified object by grand-jumpy-reifier,
changing just one part and reflecting the whole thing back in with grand-jumpy-reflector.
In some forms of Lisp [?, section 7.2], efficient code for these operations can be
generated automatically through the use of defsetf, producing an interface
presented as setf forms.

9.4. OPERATORS FOR REIFICATION AND REFLECTION 129

Integrity

A requirement met implicitly by providing a set of whole-tower reflective op-
erators is that reflective integrity should be preserved in going through a level
that uses this language. A procedure shifted up to execute into such a level can
always return information back to its home level.Therefore, information may
always be passed up and down the tower by reflecting procedures to run in
different levels as long as the language at each level has at least the facilities
of the minimal base language. This requirement must be met anyway for other
reasons: were a level not to include facilities equivalent to those of the base
language, it could not form part of a integral string of interpreters (this is a
circular argument) and so the integrity of the tower would be lost at that point.
This would make it into two orthogonal towers, as described in section ??. How-
ever, it would still have structural integrity for reification (as described later in
this section), and so lower levels would be able to access levels which they are
not interpreted by at all. Thus, such a tower would no longer be grounded, as
its connection with the umbrella interpreter would no longer have integrity—it
would be two towers for purposes of interpretation, but only one for reflection.

Structural integrity for reification, that is, for access to remote levels through
reifiers in one’s own level, is ensured through the structure of each level, rather
than through the language.

Integrity of groundedness through this level is met through the computa-
tional completeness of the language. It is grounded because it can, in its own
right, compute anything that is computable. Its groundedness does not depend
on that of any other levels.

Inserting and removing levels of evaluation

The most important of the reflected data manipulation procedures are one to
insert a new evaluator just above the base of the tower, and a complementary
one to remove an evaluator from just above the base of the tower.

Since an evaluator is an ordinary closure, it is guaranteed that when inserted
above an existing, interpretable (grounded) evaluator, it can be interpreted by
the previous first evaluator, and also that it can interpret the old application.

Here are the procedures for inserting and deleting evaluators from the end
of the tower:

130CHAPTER 9. A SUITABLE LANGUAGE FOR THE STANDARD INTERPRETER

(defun add-evaluator (evaluator)

(let* ((our-tower (grand-jumpy-reifier))

(new-level

(make-evaluator-interpretation-level

(car (level-call-record-stack our-tower))

evaluator)))

(push new-level

(level-call-record-stack our-tower))

(grand-jumpy-reflector our-tower)))

(defun remove-evaluator ()

(pop (level-call-record-stack (grand-jumpy-reifier))))

An operation on the tower that preserves its integrity is one that replaces a
string of levels by another string of levels that also has integrity. For the string
to have integrity each interpreter must be able to interpret its lower neighbour,
and so the new sequence must fit the interpreters above and below it correctly:

which we can guarantee by taking those end interfaces, labelled Algol language
and Algol program entirely into the operation, replacing not only the link be-
tween them but those levels themselves. This way, we never try to link levels
which will be incompatible, but can always insert an extra level in between as
a buffer, with the appropriate language definitions for the previous evaluator.
(The ability to do this depends on an evaluator being provided written in the
new language.) Unfortunately, this may add more levels of interpretation, and
so perhaps should be avoided in practice, for efficiency.

In practice, common tower manipulations change only one level, adding or
removing an interpreter between two that remain unchanged:

an operation which is referentially transparent to all lower levels. Although the
intensional meaning has been changed, the extensional meaning is still the same,
because a transformation that preserves integrity is one that does not destroy
the correctness of the previous interpretation.

An example of the usefulness of this is adding and removing tracing of evalu-
ation, by adding and removing an evaluator that traces what is being processed.

Handling collections of closures

To change en masse how a group of closures (such as those implementing the
operators of a language) are interpreted, the closures may be grouped by giving
them the same evaluator. This makes them share a tower level together. Then,
all that group of closures can have their processing affected by changing that
one evaluator.

9.4. OPERATORS FOR REIFICATION AND REFLECTION 131

For example, all the operator closures of the language of a closure could be
given the same evaluator, and then all activity in that language could be traced
by tracing that evaluator. (To trace an evaluator i1 which is interpreted by an
evaluator i2, we insert an evaluator it, which traces what it processes, between
i1 and i2.)

Grouping closures in this manner can cause harmless dimensional anomalies
in the tower structure. The closures that have been grouped share a tower level
because they have the same evaluator; yet they may also be at distinct tower
levels for other reasons, such as one being part of the interpreter of another.
Thus, an evaluator may exist at more than one level, and so the same tower
can have more than one number of levels between the base and the umbrella,
as shown in the following diagram:

The same reification and reflection operators may be made into a part of
any language; their action is always the same. Some languages will require
some amount of packaging around the bare reflective operators, as they may
not provide means for handling such data directly (they might have to present
it in terms of a procedure library for handling reified data), or they may prefer
to present the data in some form that matches the language’s natural model of
computation more closely.

Unrolling the infinite tower

As mentioned in sections ?? and ??, the boring section of the tower is kept
as a circular reference, which could in principle be followed indefinitely. If,
however, we were to allow a program to do so via the reifiers, it would be
hard to detect how many levels of the tower it had climbed before eventually
changing something. So, to simplify the tracking of realized tower levels, we
make the shadow versions of the the operators reifying and manipulating tower
components to do some extra work that is invisible from within the tower (unless
the program within the tower calls for reification of the meta-tower, as described
in section ??. These are the extra actions needed:

• Operators for reifying structures, and for accessing parts of structures,
that return a value from higher in the tower than their caller (for reifiers) or
their argument (for structure field accessors), and for which the result type
may be closure, compare the value found with the standard evaluator (see
sections ?? and ??. If the value is the same (eq in Lisp terminology), a
copy (one level deep, not a tree copy) of it is returned instead, otherwise
the value is returned itself. The closure is also lookup up in the tower’s
shadow maps, and if it is found to be shadowed, a copy is returned likewise.
In the copy, the original field points to the closure of which it is a copy
(see section ??), and so the meta-evaluator recognizes that this is still part
of the boring section of the tower, and so shadows its evaluation. This
copying ensures that the standard evaluator and the shadowed operators

132CHAPTER 9. A SUITABLE LANGUAGE FOR THE STANDARD INTERPRETER

can never be changed—it is never actually held in any place reachable
from any variable of any program within the tower.

• Operators for modifying fields of closures set the original field of the clo-
sure to the closure itself, so that it is no longer recognizable as a shadowed
closure if it originally was one, and when the meta-evaluator evaluates the
closure, it will do so by interpretation instead of by shadowing.

The code used for doing these actions is part of the meta-evaluator, and
so is presented in the meta-evaluator chapter, in section ??, page ??.

Reflective operators that reach the substrate

There are a few operators that reflect down (or up!) to the substrate language.
The main one of these is eval-in-cl, which takes an argument form that it
passes to the evaluator of the substrate language, which is the eval procedure
of Common Lisp. The result of the evaluation is then passed back as the result
of this Platypus operator. This operator was provided so that the benchmark
suite for Platypus could also run the same tests in Common Lisp automatically,
for comparisons of the speeds. It could also be used for a form of reflection,
right through to the substrate, to ask for compilation of Lisp forms that could
then be installed in the shadow map to make new primitives. (This is discussed
further in section ??.)

There is also a break operator, for use as a breakpoint, that runs a read-eval-
print loop in the substrate language. When the user quits from the loop, possibly
having reflected some changes into the system after reifying and displaying some
information, this operator returns.

The time-now and input-output procedures are also in some sense substrate
system reflective operations.

9.5 Summary of the base language

A language for use with the standard interpreter in the boring section of the
tower must be powerful enough to support both the standard interpreter and
the procedures that will run on it, which will typically be operators for other
languages.

The implementation of the base language has two parts: the operators them-
selves, and their shadows, which are run at the next meta-level in the tower.
(The last meta-tower is run in the substrate language on which the whole reflec-
tive system is built, and it is there that all operator definitions are eventually
evaluated.)

The language should provide operations typically needed by interpreters,
and those needed for reification and reflection. It is also desirable that the base
language be reasonably expressive.

As well as the fundamental reifiers and reflectors, it is convenient to provide
some jumpy reflectors that assign only part of the state; these are not only more

9.5. SUMMARY OF THE BASE LANGUAGE 133

efficient, but also more expressive of many common language features that they
may be used to model.

In practice, we provide many more operators in the base language than are
strictly necessary. ([?] explains how to work out which operators are necessary.)

Summary of reflective operators

Operators for reflection may be added to an existing language. With our model
for mixed-language interpretation, the same operators will work for any lan-
guage.

Reflective operators (reifiers and reflectors) are of two kinds, jumpy which
move data between program-as-agent and program-as-subject without automat-
ically creating new levels of interpretation, and pushy which create new levels
either providing data from the program-as-subject or using it to create a new
(or modified) program-as-subject. Jumpy operators are more primitive than
pushy operators, in that (on a conventional architecture) they may be used to
implement pushy operators, whereas, within one level of interpretation, pushy
operators may not be used as the primitive on which jumpy operators may be
built (other than by considerable wasted work).

One form of reflective operator is the grand reflective operator which reifies
or reflects the entire state of the system. However, it is more efficient, as well
as often more convenient, to reflect into just the part of the state required, and
so reflectors that set only specific parts of the state are also worth providing in
a practical system.

Reification of programs is homogenous between languages. The same reifiers
(and reflectors) may be used in any language, and the values returned have
closed into them all the linguistic information needed to understand the value
in any way that might be required.

A fool hath no delight in understanding, but that his heart may
discover itself.

Proverbs 18:2

134CHAPTER 9. A SUITABLE LANGUAGE FOR THE STANDARD INTERPRETER

Chapter 10

A model meta-evaluator

Having already described the standard interpreter we now look at a model for
the meta-evaluator. The meta-evaluator stands in for an infinite string of meta-
circular standard interpreter levels, and in so doing implements the entire first
dimension of the tower. To do so, whenever it is about to call a procedure—
whether that is the evaluator, a type-evaluator or an operator—which is shad-
owed, it must call the shadow procedure (which runs in the meta-evaluator’s
own level, but performs actions as though it were in the meta-evaluatee’s level)
instead of the original procedure.

10.1 Requirements for the meta-evaluator

There are two major requirements for the meta-evaluator:

• it must be able to do everything that the standard interpreter can do;

• it must support level-shifting within its own level, in such a way that it
can realize on demand levels for use in the tower that it implements.

Since we are not requiring it to conform to the structure of a tower level itself,
we can observe that

• it may be a whole interpreter (evaluator and language in one);

• it must provide operations on the fundamental types on which the stan-
dard interpreter’s type system is based.

Most of the operations of the meta-evaluator will be directly equivalent to
those of the standard interpreter, and the forms of the two will be similar.
Reflective operations do not translate so directly into operations of the meta-
evaluator because they do level-shifting, which is not possible when there is only
one level. The operations which cause level-shifts in the standard interpreter
must translate to non-reflective actions in the meta-evaluator. All these actions
affect variables of the meta-evaluator, which represent the state of the tower.

135

136 CHAPTER 10. A MODEL META-EVALUATOR

The meta-evaluator has one important variable, let us call it *tower*, whose
value is the tower which it interprets. This is the argument with which the
meta-evaluator was called.

A non-reflective operation in the tower works on the contents of the base
of the tower. For example, arithmetic operators handle values in the values
element of the current closure at the lowest level of the tower, and flow con-
trol operators affect the stack of sub-functions (sub-expressions) implicit in the
expressions elements of the stack of closures at that level.

Reflective operations may change the contents of the tower more signifi-
cantly. For example, the grand-jumpy-reflector operation sets *tower* to a
fresh value that has been produced from somewhere within the (old) contents
of *tower*. Likewise, grand-jumpy-reifier assigns to a location (such as the
value part of a variable binding) stored within the current value of *tower*.
These may be used, in conjunction with a stack in the meta-evaluator, to im-
plement pushy reflection.

This description would suffice were the meta-evaluator to be positioned at
the end of the tower. A lightning bolt [?] is needed to reach from the top of
the tower (where the ground is) toward the base of the tower. This must cut
through the infinite repetitive (boring) section of the tower:

However, as well as being at the infinitely remote upper end of the tower, the
meta-evaluator has to be alongside the whole tower, so that it can reach through
the infinite section of the tower, to shadow things at the lowest level at which
it is possible:

The lightning here travels along the tower through the meta-evaluator, which
can conduct it from one level to another as needed. As already discussed,
it strikes the highest point on the tower that is not mimicked by the meta-
evaluator; before this, it is just travelling through open space, and does not
touch anything.

Because of the meta-evaluator being beside the tower, its connection to the
tower is more complicated. Indeed the tower is more complicated than that, as
it has a castle of towers arising from the operator closures in the language of
each level, thus:

where, at any one time, exactly one of the towers drawn small on the diagram—
the one starting at the closure for the current operator—is active.

The following diagram shows that the meta-evaluator is alongside every-
thing, and that it contacts (shadows) any tower in the castle wherever a tower
in that tree reaches meta-circular standard interpretation:

Here, the meta-evaluator brings the lightning’s power to any part of the tower,
whether in the main tower or in a side tower.

10.2. AN INTRODUCTION TO PLATYPUS 137

10.2 An introduction to Platypus

Platypus is a non-reflective, single-language implementation of a reflective, mixed-
language interpreter. (Its name originally stood for Practical Language Algebra
with TYpes, Procedures, Unification and Sending, although the latter two fea-
tures are not implemented in this version of it.)

There are now three implementations of Platypus: an early prototype writ-
ten in Cambridge Lisp, a version in C written for speed, and a more readable
and concise version in Common Lisp. Both of the latter two are referred to
below. Example code throughout the thesis is drawn largely from the Common
Lisp implementation, Platypus89.

Platypus is a shadowing interpreter, as described in sections ?? and ??, and
has to implement:

• all the operators needed in the standard interpreter that it mimics;

• level-shifting, including the creation of new levels on demand;

• auxiliary functions, such as storage management, input and output.

10.3 The pull of efficiency

My thesis is that the reflective facilities described can be implemented efficiently
enough (compared against a conventional system) that a programming system
using them is useable in practice, at least for prototyping. Hence the intensively
used parts of Platypus are written with efficiency in mind. It is also essential that
everything required in the reflective system is provided correctly—correctness
cannot be compromised to gain speed. Therefore, there is a division of Platypus’
internals into two parts:

• those that are mapped onto by the standard interpreter: these are visible
and hence have to fit exactly to the abstract model of interpretation used
by Platypus;

• those that are private to the meta-evaluator: these are not visible to
programs running on the system, and so can be implemented with any
programming techniques that will provide enough speed.

This division is particularly noticeable in the C version. In Platypus89, the
equivalent procedures inside and outside the tower could be produced from the
same source, with one branch being held as a lambda-expression inside the
tower, and the other compiled to machine code by the substrate Lisp system.
(In practice, the sources are similar but not identical for most of the code, for
historical reasons. Some of the compiled code is generated mechanically from the
non-compiled code definitions, particularly for Lisp-like functions that evaluate
all of their arguments.)

138 CHAPTER 10. A MODEL META-EVALUATOR

10.4 Representation strategies

There are two ways in which we could store tower components:

• in exactly the form in which they are seen through reifiers;

• in a form convenient to the meta-evaluator, which must be converted to
and from the form seen within the tower.

In all versions of Platypus, to be sure of the correct representation of reified
state to the application, we use the former approach: everything is pre-reified—
only ever kept in its reified form—rather than reified on demand. This means
we that have to write the meta-evaluator to handle all the reifiable structures
in their reified form throughout. The only values which are not always kept in
a reified form are those that have no reified form, such as the internals of file
stream descriptors.

In practice, it turns out that this works well; representations suitable for use
with reified data are also suitable for use by the evaluator and meta-evaluator,
and there are no points at which some other representation would have been
obviously more suitable.

However, were translation at reification and reflection to be used, it would
occur at very specific points (the reifiers and reflectors). Much of it would be
simple, although there are possibilities for complicated reifiers and reflectors,
ranging from building of reified stack frames to de-compilation at reification
and compilation at reflection [?]. Because of the translation occuring at such
well-defined places, the possibilities for errors introduced by this feature are
restricted, and the possible effects on the rest of the system are reduced.

10.5 Mapping

Objects in the tower world that have special meaning to the meta-evaluator,
such as the closures representing functions which the meta-evaluator evaluates
directly itself, must be mapped onto the corresponding objects in the meta-
evaluator. In the C implementation of Platypus, this mapping is done by a pair
of hash tables, using a perfect hashing scheme—that is, hash table lookups take
a constant time. This is made possible by special allocation of memory while
initializing the system (see section ??), such that there is something special
about the addresses of the heap objects that have special meanings to the meta-
evaluator.

The more significant of the two hash tables in the C implementation, as
far as reflective interpretation is concerned, is the operator map. This maps
from objects inside the tower to functions in the meta-evaluator. If the object
is a closure representing a primitive operator, that is, one which is shadowed
by the meta-evaluator, and is being called from the standard evaluator, this
mapping succeeds and returns the meta-evaluator function. If the object is not
a primitive operator closure, it is mapped to a distinguished null value.

10.6. HOW THE META-EVALUATOR WORKS 139

The other hash table, called the location map, is concerned with garbage
collection. It is used to update C variables pointing to distinguished heap objects
(such as nil) as the garbage collector moves things around.

In the Common Lisp implementation, Platypus89, the hashing for the op-
erator map is done by normal Lisp hash-tables. There is no location map in
this implementation, as we use Lisp’s garbage collector, and all levels share
one conceptual undivided address space (and type space!), and so our meta-
evaluator variables pointing into the tower are updated automatically as part
of the normal action of Lisp’s garbage collector.

The meaning of the map

As mentioned in section ??, the operator map is in some ways analagous to
a language. Just as a language maps operator names (which are symbols, or
tokens) to operator closures, the operator map maps operator closures at one
meta-level to those at another.

Now, since the meaning of a name is not inherent in the name, but only in
the context (environment) in which the name is de-referenced, any kind of value
(such as an operator closure) may be used as a name. Thus, both operator maps
and languages translate operator names (operator extensions) of some kind to
operator closures (operator intensions) so that the intension of the operator may
be used to fulfil, in that context, the extension of the operator.

10.6 How the meta-evaluator works

Meta-circular calls to the standard interpreter are recognized with a single com-
parison operation. When the meta-evaluator begins to evaluate a level, it com-
pares the evaluator of that level with the standard evaluator.

• If they are the same, the meta-evaluator evaluates the level itself;

• If they are different, the meta-evaluator builds a new real tower level in
which to run the evaluator of the level with the level as the argument to
the evaluator. (The new level was already there in principle, but was not
realized in memory). The meta-evaluator then recurses to evaluate this
level.

When the meta-evaluator is interpreting a level directly, each time it tries
to apply an operator or type-evaluator, on behalf of a standard interpreter level
which it is shadowing, it first looks it up in the appropriate map.

• If it finds the null value (that is, the operator or type-evaluator is not
mapped), it climbs the tower, by realizing a new level of the tower to run
the evaluator of that operator or type-evaluator, and recursing to interpret
it;

• If it finds a non-null value, it calls the shadow function (in the language
of the implementation) denoted by that value, with the current level as

140 CHAPTER 10. A MODEL META-EVALUATOR

its argument. The whole tower is accessible through this level, since each
level has its evaluator built into its structure, and holds its evaluee, if any,
in the argument list of its current closure.

This is almost identical to the action of the standard interpreter within the
tower, except that there is a conditional level-shift in a one-level-deep sec-
ond tower dimension, and when this level shift is taken, the operator or type-
evaluator shadowing map is used much like a language.

The actions of the C and Lisp implementations are very similar. As far
as the ideas of reflective interpretation are concerned, they are equivalent. In
the implementations, the main difference between the evaluators is in the map-
ping mechanism—and this is a small difference, and in either implementation,
it could be done some other way. The most notable difference between the
substrate systems is that Lisp provides a lot of useful things (such as memory
management) that had to be written into the C version directly.

10.7 Summary of the model meta-evaluator

The boring part of each tower is not really evaluated, but its evaluation is
mimicked by the meta-evaluator of that tower. The meta-evaluator has two
rôles: it implements finitely the infinite tower, and it stands in for any number
of levels.

To do this, it has to be able to absorb level shifts, to stop them going any
further along the tower. It does this by realizing new levels, (and abandoning
old ones), on demand, when it must extend the non-boring part of the tower,
and shadowing things itself when still on the boring section.

The code of the meta-evaluator can be similar to that of the standard eval-
uator, with the addition of some level-shifting code that would not, within the
tower, be allowed to exist within a single level, because it is capable of generating
(realizing) levels1.

The meta-evaluator is alongside the tower (from the tower’s point of view)
and both alongside and above the tower (from the meta-evaluator’s point of
view).

The meta-evaluator runs beside the lowest tower level that it can, that is,
one level above the highest one that is not mimicked by the meta-evaluator.
It follows this boundary by climbing up to new levels as it realizes them, and
climbing back off them when they are no longer needed.

There are two approaches to how the meta-evaluator should view data within
the tower, in terms of how each type of data is represented, and whether each
type appears as the same type inside and outside the tower, or as distinct types.
In this thesis, we hold the data in the same form in both, and hence, for example,
stack frames do not have to be re-encoded when reified or reflected.

The meta-evaluator must have a map from shadowed operators in the tower
to shadowing operators in the meta-evaluator. In a system with only one di-

1Within the tower, each procedure may be in only one level at a time.

10.7. SUMMARY OF THE MODEL META-EVALUATOR 141

mension to the tower, this map must be visible to the meta-evaluator but not
to the tower.

If the meta-evaluator implements the storage system of the tower, it must
also have a map from distinguished objects within the tower to variables in the
meta-evaluator. If the meta-evaluator and the tower share a storage system,
such a map is not needed.

“And part of the roof came off, and ever so much thunder got in—and
it went rolling round the room in great lumps—and knocking over the

tables and things—till I was so frightened, I couldn’t remember my own
name!”

The White Queen, Through the Looking Glass, Chapter 9

142 CHAPTER 10. A MODEL META-EVALUATOR

Chapter 11

The meta-evaluator

In this chapter, we present a meta-evaluator for towers of the form described in
this thesis. There are two implementations of the meta-evaluator, the earlier of
these two being written in C, and the other in Lisp. They are presented in the
other order, however, since the Lisp one is more important, and has superseded
the C version.

The Lisp implementation has two versions, the second being derived from the
first by moving common code from several procedures into a separate procedure,
which is the kernel of this form of the meta-evaluator.

In section ?? we look at Platypus89, the Lisp implementation of Platypus,
which is written for conciseness, readability and programming aesthetics. A full
listing of Platypus89 is given as Appendix A of this thesis.

In section ??, we look briefly at C-Platypus, the C implementation of Platy-
pus. This is written for efficiency. Although this line of development was aban-
doned in favour of the Lisp-based approach, some of the ideas explored in this
version may be useful in future developments of reflective interpreters, and so
are still presented.

11.1 Platypus89 - a tower evaluator in Lisp

The meta-evaluator of Platypus89 is a Lisp function looking much like the stan-
dard interpreter. The listing given here is produced directly from the real sources
(using a mixed-language style of LATEX and Lisp!). As with other listings from
the real source code, the Lisp syntax has been modified to allow labelling of
points in the code with text in square brackets.

The standard meta-evaluator itself

The general tower meta-evaluator function is very similar in structure to the
standard evaluator, but it must also perform level shifting when required.

143

144 CHAPTER 11. THE META-EVALUATOR

(defun evaluate-anything (anything background-level)

"Evaluate ANYTHING in the context of LEVEL."

(let* ((cont (level-current-closure background-level))

(evaluator (closure-evaluator cont)))

[is-on-standard-evaluator?]

(if (not (eq (closure-original evaluator)

(tower-standard-evaluator-closure

(level-tower background-level))))

[interpret-evaluator]

(let ((evaluator-interpretation-level

(make-interpretation-level

background-level

evaluator)))

(evaluate-anything evaluator-interpretation-level

evaluator-interpretation-level))

[evaluator]

(let ((inside-tower-type-eval

(env-lookup (type-of anything)

(closure-type-evaluators cont))))

(if inside-tower-type-eval

(let ((outside-tower-type-eval

[type-shadow-lookup] (env-lookup (closure-original

inside-tower-type-eval)

(tower-type-shadow-map

(level-tower

background-level)))))

(if outside-tower-type-eval

[shadowed-type] (funcall

outside-tower-type-eval

anything background-level cont)

(let ((type-interpretation-level

(make-interpretation-level

background-level

inside-tower-type-eval)))

(evaluate-anything

type-interpretation-level

type-interpretation-level))))

anything)))))

The first decision to make in the meta-evaluation of a level is whether the
the level can be interpreted directly by the meta-evaluator, or whether the
level’s evaluator must be interpreted. The rule for this, as explained in sec-
tion ??, is that the level can be interpreted directly if its evaluator is the
standard evaluator, and otherwise its evaluator must be interpreted by the
meta-evaluator. This decision is taken at [is-on-standard-evaluator?].
If the level cannot be evaluated directly, the meta-evaluator recurses to run it,
at [interpret-evaluator]. This realizes (see section ??) a level of the tower,

11.1. PLATYPUS89 - A TOWER EVALUATOR IN LISP 145

which previously existed abstractly but had no separate representation in the im-
plementation. The realization is done in make-interpretation-level, which
allocates a new level and fills it in such that when interpreted it will interpret
the given evaluator with the original level as the evaluator’s argument.

If the level can be evaluated directly, this is done at [evaluator], a
point which has a direct equivalent in the standard evaluator. The type of
the evaluand is looked up in the type-evaluators environment of the level
to find a closure to instantiate and apply to evaluate that kind of evaluand.
If no way of evaluating it is found, the evaluand is returned unchanged, at
[type-unknown]. Otherwise, the original of the type-evaluator is looked up
in the type-shadow-map of the tower, at [type-shadow-lookup]. As explained
in section ??, the original field may be used to determine whether a closure
is an instantiation of a particular closure (usually a shadowed one). If a closure
is modified (other than in the values list), its original field—not accessible
to be changed independently—is changed automatically to point to the closure
itself, rather than that of which is was an instantiation, and so it will not be
treated as an instantiation of that one any longer. If the type evaluator is
shadowed, the shadow is called, at [shadow-type]. Otherwise the type eval-
uator must be interpreted, in a modified copy of this levl, made and evaluated
at [non-shadowed-type]. For a system with a one-dimensioned tower, the
shadow procedure is in the substrate language, Common Lisp. It will be one of
the procedures presented below.

The list evaluator

The list evaluator is like that within towers (including the all-too-Lisp-specific
part for handling nil!), but must also look for the shadow of an operator,
and, if it has one, use that, otherwise realizes (see section ??) a new level
to interpret the operator definition, and interprets that level using the cur-
rent evaluator—this is done using the Platypus form (or Common Lisp macro)
evaluate-by-evaluator-of-level (presented in section ??) rather than as
a direct call, so that this procedure may be called from places other than
evaluate-anything:

146 CHAPTER 11. THE META-EVALUATOR

(defun meta-eval-list (list background-level curr-cont)

"Evaluate LIST in the context of BACKGROUND-LEVEL.

CURR-CONT is the current continuation closure, which the caller has

already extracted and so might as well pass along."

(if (null list)

nil

(let* ((operator-name (expression-operator list))

(operator (env-lookup operator-name

(closure-language curr-cont))))

(if (null operator)

[funcall]

(with-changed-level

background-level

(:continuation-expression (cons ’funcall list))

(evaluate-anything background-level

background-level))

[operator]

(let ((shadow-definition

[shadow-lookup] (shadow-lookup

operator

(level-tower background-level))))

(if (null shadow-definition)

[non-shadowed-op]

(let ((operator-interpretation-level

(make-interpretation-level

background-level

operator)))

(evaluate-anything

operator-interpretation-level

operator-interpretation-level))

[shadowed-op]

(funcall shadow-definition

list

background-level

curr-cont)))))))

Extraction of the expression, operator and operator definition of the current
continuation closure of the level are just as in the standard evaluator, as is the
automatic conversion of unknown operators into procedure calls.

Once an operator has been found, the action is similar to that of the standard
evaluator, but with the addition of code to handle shadowing of some opera-
tors by primitive definitions. The split between shadowed and non-shadowed
operators is, in terms of the standard evaluator, entirely within the (funcall
op anything) at [operator]. In principle, the standard evaluator and the
meta-evaluator could be produced from the same source code, using an oper-
ator/procedure which could be described as shadowable-funcall; within the
tower, this would be a normal funcall, but in the meta-evaluator, would have

11.1. PLATYPUS89 - A TOWER EVALUATOR IN LISP 147

the extra rôle of finding and using the shadow versions of callee procedures that
have shadows.

At [shadow-lookup], the shadow map for the tower is looked up. This
shadow map must match the tower’s meta-evaluator, and describes which op-
erators the meta-evaluator has shadows for. Ideally, it should be a field of the
value stored in the meta-evaluator field of the tower.

If there is no shadow for that operator, the meta-evaluator recurses to inter-
pret the interpretable definition of the operator. This is done at [non-shadowed-op].

If a shadow has been found, it is called directly (that is, to run at the level
of the meta-evaluator), at [shadowed-op]. This is written as a macro partly
to give it a more descriptive name, and partly to hide even more optionally
compiled tracing code! It is, in the underlying Common Lisp, simply a funcall.

The symbol evaluator

Symbol evaluation is very similar—there is no shadowing to do here either!
The code below is simplified slightly from what a real system should do, in

that if nil is returned by the first lookup, the second lookup is performed. This
should really be done using a multiple-value return [?, Section 7.9] with the first
value being the result of the lookup and the second value being the success code.
However, there is another approach to this, using a distinct return value (which
the next meta-level might not make available for general use at this level). This
is described in section ??.

Like Common Lisp, our dialect of Lisp provides keywords—symbols which
always evaluate to themselves—and they are handled at [keyword]. (Key-
words are printed with a colon preceding the symbol name.) They are gener-
ally useful as simple token values; for example, in the list of changes given to
with-changed-level, they are used to name the parts of the level to change.

(defun meta-eval-symbol (symbol background-level curr-cont)

"Evaluate SYMBOL in BACKGROUND-LEVEL."

(cond ((eq symbol t) t)

[keyword] ((keywordp (the symbol symbol))

symbol)

(t

(let

((dynamically-found

(env-lookup symbol

(closure-fluid-environment

curr-cont))))

(if dynamically-found

dynamically-found

(env-lookup symbol

(level-lexical-environment

background-level)))))))

148 CHAPTER 11. THE META-EVALUATOR

The string-char evaluator

Evaluation of local variable indices (string characters) is just as in the evalu-
ator inside the tower. Since the listings here present the working code of the
system, they use for efficiency a Common Lisp feature that does not affect the
semantics of the program: the declaration the, which allows the compiler to
make assumptions about the types of expressions’ results. A fixnum is a num-
ber which is an integer and which need not have heap memory allocated for
it—that it is, it is not a double and not a bignum (a number stored as a string
of digits). (This requires it to be small enough to fit, along with its tag bits,
into one machine word.) Telling the compiler explicitly that values are of this
type permits the use of efficient number handling code, with, for example, ad-
dition instructions that are compiled in-line, instead of tests on the types of the
arguments, and calls to a general-purpose addition procedure to deal with any
cases that the in-line code cannot handle directly itself. (In addition to this,
some parts of the system are compiled with an implementation-specific procla-
mation, (fixnum-safety 0), which tells the compiler that all arithmetic is to
be performed with fixnum operations (which are typically inlined) rather than
calling general arithmetic functions.)

(defun meta-eval-stringchar (char background-level curr-cont)

"Evaluate CHAR in the context of BACKGROUND-LEVEL.

CURR-CONT is the current continuation closure,

which the caller has already extracted and so might

as well pass along."

(declare (ignore background-level))

(nth-value (the fixnum (char-int char))

(closure-values curr-cont)))

The local variable references evaluator

Local variable reference structures also involve no shadowing:

(defun meta-eval-lvr (lvr background-level curr-cont)

"Evaluate LVR in BACKGROUND-LEVEL."

(declare (ignore background-level))

(nth-value (the fixnum

(local-variable-reference-slot-number lvr))

(closure-values curr-cont)))

11.1. PLATYPUS89 - A TOWER EVALUATOR IN LISP 149

The level evaluator

Levels are handled exactly as inside the tower (perhaps a little surprising, con-
sidering their close involvement with the model of reflective evaluation):

(defun meta-eval-level (arglevel background-level curr-cont)

"Evaluate ARGLEVEL in BACKGROUND-LEVEL."

(declare (ignore background-level curr-cont))

(evaluate-anything (level-current-expression arglevel)

arglevel))

The closure evaluator

The same goes for closure evaluation:

(defun meta-eval-closure (closure background-level)

"Evaluate CLOSURE in BACKGROUND-LEVEL."

(with-changed-level background-level

(:evaluator

(closure-evaluator closure)

:language

(closure-language closure)

:procedure-expression

(closure-procedure-expression closure)

:continuation-expression

(closure-continuation-expression closure))

(call-meta-evaluator background-level)))

The macro with-changed-level is explained in section ??.
The other evaluators just pass the arguments straight through:

(defun meta-eval-string (string background-level curr-cont)

"Evaluate STRING in BACKGROUND-LEVEL."

string)

(defun meta-eval-integer (integer background-level curr-cont)

"Evaluate INTEGER in BACKGROUND-LEVEL."

integer)

(defun meta-eval-nil (the-nil background-level curr-cont)

"Evaluate THE-NIL in BACKGROUND-LEVEL."

the-nil)

150 CHAPTER 11. THE META-EVALUATOR

This is all of the significant code of the meta-evaluator. Much of the rest of
Platypus89 is made up of the operators and their shadows.

Summary of the meta-evaluator code.

In the small amount of code presented above are all the semantically significant
parts of a mixed-language meta-tower-based evaluator—and perhaps more than
is strictly necessary for that function. The apparently complex goal turned out
to have an essentially simple solution, refined to be just what is required for the
generalization of what it is for something to be an evaluator for procedural and
functional languages.

Is it possible to refine this further, to derive a function which describes the
essence of tower-reflective interpretation in the context of a mixed-language
system?

Several parts of this are directly equivalent to parts of the standard evaluator,
and the explanations given in section ?? apply precisely to these points too.
These include those marked as [funcall], [operator], and [evaluator].

11.2 The essence of reflective tower evaluation

Just as it is possible to refine the standard evaluator to a form in which several
parts of the evaluator are calls to a suitably parameterized function, it is also
possible to do this with the standard meta-evaluator.

This parameterized function, the snark, is this:

;;;; Is this the ultimate Lisp function?

(defun snark (thing

level selector

env-selector shadow-selector

cont)

"Parameterized meta-tower evaluator kernel

for mixed languages."

(funcall (lookup (lookup (funcall selector

thing)

(funcall env-selector

level))

(funcall shadow-selector

level))

thing level cont))

It is very similar to boojum, but with a second selection and lookup. It is an
optimized form of a boojum-boojum function:

11.2. THE ESSENCE OF REFLECTIVE TOWER EVALUATION 151

(defun boojum-boojum (thing

level selector

env-selector meaning-selector

shadow-selector)

"Parameterized meta-tower evaluator kernel

for mixed languages."

(funcall (lookup (funcall meaning-selector

(lookup (funcall selector

thing)

(funcall env-selector

level)))

(funcall shadow-selector

level))

thing level))

the optimization being that meaning-selector is always the identity function.
The snark function is used in the following procedures to make the new version
of the meta-evaluator. This is a replacement for the code presented in section ??,
but it uses snark for each of the appropriate parts of the evaluator, instead of
the ad-hoc evaluation functions there shown. It may be instructive to compare
this with the code presented on page ??, to see the similarity between snark
and the last part of that version of evaluate-anything. The general tower
meta-evaluator function is very similar in structure to the standard evaluator
presented on page ??,, but it must also perform level shifting when required.

In this case, snark is used to do the switching on the argument type, and
the level shift is performed conditionally, to get the type evaluator either inter-
preted or mimicked as appropriate.

152 CHAPTER 11. THE META-EVALUATOR

(defun evaluate-anything (anything background-level)

"Evaluate ANYTHING in the context of LEVEL."

(let* ((cont (level-current-closure background-level))

(evaluator (closure-evaluator cont)))

(if (not (eq (closure-original evaluator)

(tower-standard-evaluator-closure

(level-tower background-level))))

(let ((evaluator-interpretation-level

[non-shadowed-eval] (make-interpretation-level

background-level

evaluator)))

(evaluate-anything evaluator-interpretation-level

evaluator-interpretation-level))

[shadowed-eval]

(snark anything

background-level

#’type-of

#’level-type-evaluators-function

#’level-type-shadow-map-function

cont))))

It would be possible to simplify this evaluator further, with added flexibility,
but at the expense of speed, by using another map to go from the evaluator
in the tower to its shadow, the meta-evaluator. In such a system, this new
map (which replaces the if in the code presented above) would map the stan-
dard evaluator to a procedure which calls snark to switch on the evaluand
type, as at [shadowed-eval], and anything else (via the map environment’s
unbound value) to a procedure which makes a new level in which to interpret
the evaluation, as at [non-shadowed-eval]. The use of the extra map would,
naturally, be implemented by another call to snark. The further flexibility that
this brings is that it would then be possible for more than one possible evaluator
to be shadowed by more than one meta-evaluator.

The expression evaluator

The expression evaluator uses snark to dispatch on the operator name and
to do the level shift, if necessary, to get the operator definition interpreted or
mimicked as appropriate.

In this version of the expression evaluator, there is no code to convert un-
known operators to function calls. This may be done by having the unbound
pseudo-binding in the language environment bind unknown operators to a pro-
cedure which converts them to function calls and tries again.

11.2. THE ESSENCE OF REFLECTIVE TOWER EVALUATION 153

(defun meta-eval-list (list background-level curr-cont)

"Evaluate LIST in the context of BACKGROUND-LEVEL.

CURR-CONT is the current continuation closure, which

the caller has already extracted and so might as well

pass along."

(if (null list)

nil

(snark list

background-level

#’expression-operator-function

#’level-language-function

#’level-operator-shadow-map-function

curr-cont)))

The symbol evaluator could use snark with the identity function as the
key selector for use on symbols, and have the unbound binding in the lexical
environment bind to a function that looks the name up in the dynamic environ-
ment. Then, as snark always evaluates the result of its lookups, this inheritance
between the two environments is provided—at the cost of each binding being
of a procedure that returns the intended value of the binding—rather like a
continuation-passing style of environment implementation.

(defun meta-eval-symbol (symbol background-level curr-cont)

"Evaluate SYMBOL in BACKGROUND-LEVEL."

(cond ((eq symbol t) t)

[keyword] ((keywordp (the symbol symbol))

symbol)

(t

(let

((dynamically-found

(env-lookup symbol

(closure-fluid-environment

curr-cont))))

(if dynamically-found

dynamically-found

(env-lookup symbol

(level-lexical-environment

background-level)))))))

The remaining functions are as in the other version of the evaluator, as they
have no particular use for calling snark.

This is all of the significant code of the compact meta-evaluator, occupying
only 83 lines of openly formatted Lisp, in 11 procedures—perhaps rather shorter
than an ad-hoc versions of such a function would be!

154 CHAPTER 11. THE META-EVALUATOR

This is shorter than I originally expected such a program to be, and is quite
a small part of the overall system. An analysis of the size of the system is
presented in section ??.

11.3 Summary of the meta-evaluator code.

Is it possible to refine this function further? There is one thing that can be
done: to pun on the names of structure components, making an isomorphism
between the union of all possible evaluands (or their types) and the structural
field wherein they exist and are evaluated. Doing this, the key selector and
the environment selector take on the same names for each pair. Are there any
parallels to this in other programming systems? It is similar in some ways to
instances and classes in object-oriented system such as SmallTalk-80 and CLOS.

Structural punning apart, the boojum/snark appears to be the most refined
form of evaluator that can be derived along these lines. Seen in more general
terms than Computer Science, it does seem to make sense as a description of
performing an action according to instructions: use some key aspect of the
situation and some key aspect of the context to find an action, and perform
that action, possibly moving to the plane of abstraction necessary for handling
that action.

How does this fit in with general models for action, for example the delib-
eration model of Doyle [?], as re-presented in [?]? This is examined further in
chapter ??.

The data stack representation in the meta-evaluator

In Platypus89, the data stack is represented as a single extensible vector, the
values list, which is shared between all closures that refer to it. Its division into
stack frames is an abstraction visible only in the operators of languages, and a
language may treat it as an open stack, as does PostScript, for example.

There are several advantages to this form of stack, which I consider to be a
correct choice of stack design here.

• Open-stack (eg FORTH, PostScript) and framed-stack (eg Lisp, Algol)
languages can use it interchangeably, and can cross-call transparently us-
ing it.

• It is easy to pass a variable number of arguments, although either an end-
of-list marker or a count must be passed, unless the extent of the argument-
list is implied by the values of some of the arguments. This provides, for
example, for Lisp’s &rest, and for PostScript’s array operator, and its
overloaded transformation operators such as rotate.

• It is easy to reify—and the structure is simple to manipulate.

• It is efficient—there are no stack frames to allocate and collect, only a
pointer or index that represents the end of the stack.

11.3. SUMMARY OF THE META-EVALUATOR CODE. 155

• Multiple results can be returned, as required for PostScript and Common
Lisp.

• The only assumption that it echoes is that there is a conventional call-
return stacking—an assumption made throughout the rest of the system
anyway.

• There are no “live, but returned-from” stack frames to manage—this stack
organization forces operators to store the data off the stack at the appro-
priate time.

One point that might seem unusual or counter-intuitive about the correct im-
plementation of this kind of stack is that Lisp/Algol-like languages must take
their first argument as being the first on the stack–that is, the highest-indexed
in terms of the stack implementation. This gives compatibility with languages
like PostScript, even to the extent of &rest working compatibly between them
and other languages.

The only drawback with this ordering is that if arguments to a function
are to be evaluated left to right, as Common Lisp and many other languages
require, the results cannot be pushed onto the stack in the order in which they
are evaluated. The solution to this is to access the value list as an indexable
array rather than as a stack while doing this. The auxiliary function for funcall,
funcall-helper, which is presented on page ?? in section ??, uses the following
macro to evaluate the argument sub-expressions from left to right but to push
their results right to left:

156 CHAPTER 11. THE META-EVALUATOR

(defmacro eval-and-push-sub-exprs (expr level)

"Evaluate each sub-expr (except the first) of EXPR in

the context of LEVEL. If optional extra argument START

is given, that specifies where to start in the sub-expr

list, with 1 being the usual place, that is, it is how

many initial sub-exprs not to evaluate. The results are

pushed onto the stack of LEVEL."

‘(with-values-of-level

,level

(let* ((the-exprs ,expr)

(the-length (length the-exprs)))

(when (>= (+ the-length (the-value-list-last))

(the-value-list-max))

(extend-value-list (the-value-list) the-length))

(do* ((x the-exprs (cdr x))

(n (- the-length) (1+ n)))

((endp x))

(setf (the-nth-value n)

(evaluate-by-evaluator-of-level

(car x) ,level)))

(incf (the-value-list-last) the-length))

nil))

It would, in principle, be possible to use the same stack mechanism to imple-
ment the stack of saved closures in each level (the return stack, in conventional
terms) and also to implement the stack of levels that, along with the shadowing
system, makes up each tower. This would reduce the amount of code needed,
not only to implement the tower, but also in programs that use reified data.

11.4 Other parts of the meta-evaluator

The central procedure of the meta-evaluator is similar to that of the standard
evaluator, and there are other parts that are analogous to some in the standard
evaluator. These include the operators, and procedures called by the operators
for common purposes such as the evaluation of arguments.

As well as the parts that do have analogues in the standard evaluator, there
are those that handle the tower manipulation—constructing levels and shifting
between them.

The Platypus operator (or Lisp macro, in the meta-evaluator) evaluate--
by-evaluator-of-level calls the evaluator of the current level, or, if that
evaluator is the standard evaluator, calls the meta-evaluator directly. It is used
where procedures called by the evaluator need to call the evaluator. Going
via the evaluator of the current closure of the current level is preferable to

11.4. OTHER PARTS OF THE META-EVALUATOR 157

calling standard-evaluator or evaluate-anything directly, as it allows such
procedures to be called from places other than the standard evaluator and meta-
evaluator. The code of evaluate-by-evaluator-of-level is is follows:

(defmacro evaluate-by-evaluator-of-level (thing level)

"Evaluate THING in the tower of LEVEL

using the evaluator of that tower."

‘(let* ((our-level ,level)

(evaluator (level-evaluator our-level)))

(with-changed-level

our-level

(:continuation-expression ,thing)

(if (= standard-evaluator-closure-number

(closure-number evaluator))

(evaluate-anything ,thing our-level)

(call-meta-evaluator our-level)))))

Creating and using towers and levels

The procedures presented here create and maintain towers and the levels that
make up the towers. They are in two groups, those handling whole towers and
those handling levels.

Procedures for handling towers

The following procedures set up and start towers. Starting a tower means
applying its meta-evaluator to it; starting a tower in the real evaluator (of which
these routines are part) means applying something one stage further away than
the meta-evaluator, as all levels of meta-tower that support that tower must
also be started at the same time.

A tower is a complex data structure with many cycles of references; new-tower
and funcall-shadow, and many of the procedures presented further below, are
used in the maintenance of this structure.

Much of the manipulation of the tower is done in the core of the meta-
evaluator, but it can also be done by operators, including some that might not
normally be regarded as reflective. For example, funcall-shadow is unusual in
being an operator that manipulates the tower structure explicitly (in the form
of adding a call record to the call record chain of a level)—although this may
be done by any procedure in the system, whether or not it is an operator, and
whether or not it is shadowed, as these actions are simply the manipulation of
a data structure.

Some structure access operators, for manipulating fields of tower compo-
nents, may sometimes be in effect reflective, if the components that they alter
are parts of a live tower, as reifier results are—reifiers in Platypus do not take
a copy (snapshot) of the tower, but return references to parts of the real tower.

158 CHAPTER 11. THE META-EVALUATOR

When this is the case, operators such as set-closure-evaluator are jumpy
reflectors. As described in section ??, the shadow versions of such operators
take special actions to ensure that shadowed procedures are never altered—a
copy is always taken at the appropriate place and it is that copy that is altered.

Towers are created by the function new-tower, which takes as its arguments
the meta-evaluator, the base level program, and the standard procedure. The
tower that it sets up has the base level already realized, complete with a reference
back to the tower. If there are already some evaluator levels attached to the
base level, they are retained, and these levels are given references back to the
tower just as the base level is.

(defun new-tower (meta-eval base stand-proc)

"Make a new tower, with META-EVAL as its

meta-evaluator, BASE as the program it is to run at its

base level, and STAND-PROC the evaluator it is to use

as its standard evaluator. Any evaluators BASE may

already have are kept, and STAND-PROC is put above them

all."

(let ((the-tower

(make-tower

:meta-evaluator meta-eval

:base-level base

:standard-evaluator-closure stand-proc)))

(do* ((this-one base

next-one)

(next-one (closure-evaluator

(level-current-closure

this-one))

(closure-evaluator

(level-current-closure

this-one))))

((eq next-one stand-proc) nil)

(when (null next-one)

(setf next-one

stand-proc

(closure-evaluator

(level-current-closure

this-one))

stand-proc)))

the-tower))

new-tower creates a tower with a given meta-evaluator, application program,
and standard evaluator. This tower is suitable for passing to run-tower.

11.4. OTHER PARTS OF THE META-EVALUATOR 159

(defun run-tower (tower)

"Evaluate TOWER."

(begin-define-in-tower tower)

(prog1

(call-meta-evaluator (tower-base-level tower))

(end-define-in-tower tower)))

run-tower is the real substrate language procedure that starts the evaluation
of a tower. It sets the definition context (for such things as defun) to be that
tower, and then passes control to the tower’s meta-evaluator, and, after setting
the definition context back to what it was, returns the result from the meta-
evaluator.

Procedures for handling levels

These macros and procedures are for creating (or realizing—see section ??) new
levels. They are used in the meta-evaluator when it has to do level shifts when
a evaluator, type-evaluator or operator must be interpreted.

(defmacro make-interpretation-level (level evaluator)

"Make a level with the context from LEVEL

to evaluate an instance of EVALUATOR with an

argument of LEVEL. EVALUATOR is a closure."

‘(new-level

,level ; level

,evaluator ; closure

(list ,level ,level))) ; arguments

new-level is the central routine for creating new levels ready for parts of the
evaluator to shift the evaluation into them. It takes as arguments:

• A level, from which a tower is found. The new level is put into the same
tower as this argument level. This level also provides the template closure
used to fill in parts of the instantiated closure that the level will start
running.

• A closure to instantiate, providing the expression that the new level is
to run. The rest of the instantiated closure (apart from the argument list,
that is, the initial value list) is made from the template closure which is
part of the level supplied as the first argument.

• A argument list which is used to fill in the initial contents of the value
list of the current closure of the new level.

new-level creates two linked structures, a level and the current closure for that
level, and completes the cycle of references between them.

The code of new-level is as follows:

160 CHAPTER 11. THE META-EVALUATOR

(defun new-level (level closure args)

"Construct a level to go in the tower of LEVEL

made by instantiating CLOSURE with ARGS for its

arguments."

(let* ((tower (level-tower level))

(template (level-template-closure level))

(the-new-closure

(make-closure

:evaluator

(closure-evaluator template)

:language

(closure-language template)

:type-evaluators

(closure-type-evaluators template)

:procedure-expression

(closure-procedure-expression closure)

:continuation-expression

(closure-continuation-expression closure)

:values

(convert-to-value-list args)

:lexical-environment

(closure-lexical-environment template)

:fluid-environment

(closure-fluid-environment template)

:level

nil ; filled in later to complete a circle

:original

(closure-original closure)

:number

(incf closure-counter)))

(the-new-level

(make-level

:call-record-stack

(list the-new-closure)

:tower tower

:template-closure (closure-original closure))))

(setf (closure-level the-new-closure) ; complete the circle

the-new-level)

the-new-level))

Modifying levels

The macro with-changed-level is used in a variety of ways. It modifies its
argument level as specified by a list of changes, evaluates its body forms, and
undoes the changes it made to the level, before returning the result of the last
of the body forms.

In effect, this is a rebinding of some fields of the level, the scope of the
rebinding being the body arguments of this macro. However, the rebinding is

11.4. OTHER PARTS OF THE META-EVALUATOR 161

not done within the level being modified, but in the meta-evaluator handling
that level—in this case, in the stack of the substrate system.

This is important not only for intuitively correct evaluation of the interpre-
tive tower, but also for its efficient evaluation. It is correct, because some of
this work is done behind the scenes by the meta-evaluator, and is hidden from
the tower being worked on; it is efficient, because it avoids creating temporary
tower levels and throwing them away after use—the original level is re-used,
and the temporary storage is on the substrate system’s stack.

The coincidence of correctness and efficiency goes further than that, too:
were temporary levels to be made for use in the evaluation, changes made to
those levels through the use of reflection would be discarded unless copied back
into the levels from which the temporary levels were copied.

The disputable point here is not whether this technique should be used, but
where the saved data should be stored, in the version that runs on the substrate
system. (Obviously enough, when run on an ordinary meta-evaluator, the saved
data may be kept on that evaluator’s stack.)

The expansion of with-changed-level can be quite complex; its macro-
expander procedure calls the following procedure, make-change-savers, to gen-
erate pieces of the code to return. It takes a list of change descriptions, each
of which consists of a list containing a keyword indicating what to change, and
a form indicating what to change it to. It returns a list of lists, each of which
contains (in order):

• the name of a variable in which to save the old value,

• the name of a temporary variable in which to store the new value while
other changes may be being calculated—they all take effect simultaneously
as far as the evaluand tower is concerned

• the form to evaluate to get the new value,

• and the structure field description of what to change in the level (in a
form suitable for passing to Common Lisp’s setf [?, section 7.2]).

The elements of these lists are built into the result of the with-changed-level
expander.

162 CHAPTER 11. THE META-EVALUATOR

(defun make-change-savers (change-list)

"Shadow function for expanding with-changed-level."

(let ((the-savers nil))

(let ((evaluator-value

(member :evaluator change-list

:test #’eq)))

(when evaluator-value

(push

‘(old-evaluator new-evaluator

,(second evaluator-value)

(closure-evaluator the-cont-clo))

the-savers)))

(let ((language-value

(member :language change-list

:test #’eq)))

(when language-value

(push

‘(old-language new-language

,(second language-value)

(closure-language the-cont-clo))

the-savers)))

(let ((type-evaluators-value

(member :type-evaluators change-list

:test #’eq)))

(when type-evaluators-value

(push

‘(old-type-evaluators new-type-evaluators

,(second type-evaluators-value)

(closure-type-evaluators the-cont-clo))

the-savers)))

(let ((procedure-expression-value

(member :procedure-expression change-list

:test #’eq)))

(when procedure-expression-value

(push

‘(old-procedure-expression new-procedure-expression

,(second procedure-expression-value)

(closure-procedure-expression the-cont-clo))

the-savers)))

11.4. OTHER PARTS OF THE META-EVALUATOR 163

(let ((continuation-expression-value

(member :continuation-expression change-list :test #’eq)))

(when continuation-expression-value

(push

‘(old-continuation-expression new-continuation-expression

,(second continuation-expression-value)

(closure-continuation-expression the-cont-clo))

the-savers)))

(let ((values-value

(member :values change-list :test #’eq)))

(when values-value

(push

‘(old-values new-values

,(second values-value) (closure-values the-cont-clo))

the-savers)))

(let ((lexical-environment-value

(member :lexical-environment change-list :test #’eq)))

(when lexical-environment-value

(push

‘(old-lexical-environment new-lexical-environment

,(second lexical-environment-value)

(closure-lexical-environment the-cont-clo))

the-savers)))

(let ((fluid-environment-value

(member :fluid-environment change-list :test #’eq)))

(when fluid-environment-value

(push

‘(old-fluid-environment new-fluid-environment

,(second fluid-environment-value)

(closure-fluid-environment the-cont-clo))

the-savers)))

the-savers))

with-changed-level has a macro expansion in which the subject level and the
parts involved in the change are bound to variables, using let*. Within the
body of the let*, the modifications are made, the argument body evaluated,
and the modifications reversed, before returning the result of the last of the
argument body forms.

164 CHAPTER 11. THE META-EVALUATOR

(defmacro with-changed-level (level changes &body body)

"Modify LEVEL as specified by the keyword arguments in CHANGES, and

run BODY. Then change the changed parts back."

(let ((change-savers (make-change-savers changes)))

‘(let* ((the-level ,level)

(the-cont-clo (car (level-call-record-stack the-level)))

,@(map ’list #’(lambda (saver)

‘(,(first saver) ,(fourth saver)))

change-savers)

,@(map ’list #’(lambda (saver)

‘(,(second saver) ,(third saver)))

change-savers))

,@(map ’list #’(lambda (saver)

‘(setf ,(fourth saver)

,(second saver)))

change-savers)

(let ((result (progn ,@body)))

,@(map ’list #’(lambda (saver)

‘(setf ,(fourth saver)

,(first saver)))

change-savers)

result))))

Examples of the use of with-changed-level may be found in several places in
the code presented in this thesis, including at section ??.

11.5 Operators and their shadows

Each operator of the base language (as described in chapter ??) is shadowed by
a procedure in the meta-evaluator. These could in principle be compiled from
the corresponding definitions within the tower, but (for historical reasons) most
of them are written separately. They are largely generated by Lisp macros, as
there is an appreciable amount of standard code at the start of each, to pick
apart the level that is passed in as an argument, and, in the case of operators
that evaluate all their arguments (such as arithmetic operators, cons, etc), to
perform the argument evaluation.

There are one or two parts to the definition of each shadowed operator:

• the definition of the version that is kept within the tower, which also
includes a reference to the compiled Lisp code to use outside the tower;

• the Lisp code that is compiled to make the shadow definition; for some
operators, this can be compiled from the definition that goes inside the
tower.

An example of the kind with a separate Lisp function is the primitive if
operator, which has the Lisp helper function:

11.5. OPERATORS AND THEIR SHADOWS 165

(defun if-helper (expr level cont)

"Interpret a LEVEL that wants to do an if-then-else."

(let* ((condition (second expr))

(if-case (third expr))

(else-case (fourth expr)))

(if (evaluate-by-evaluator-of-level condition level)

(evaluate-by-evaluator-of-level if-case level)

(evaluate-by-evaluator-of-level else-case level))))

and the definition in the tower:

(platypus-def-control-prim

if ; name

if-helper ; helper function to use

(condition then else) ; argument names for definer

; macro to generate for use

; in procedure body

;; procedure body (to run in tower for non-shadowed

;; interpretation)

(if (eval-in-level condition int-level)

(eval-in-level then int-level)

(eval-in-level else int-level)))

Platypus89 operators that are very like existing Lisp functions, and need all
their arguments evaluated anyway, may be defined in one piece, as follows:

(platypus-def-lispy-prim

cons ; name within tower

cons ; name of primitive Lisp function to call

(a d) ; argument list

(cons a d)) ; code to run inside or outside the tower

The operator + is one of those defined to evaluate all its arguments. Its
definition is as follows:

(platypus-def-lispy-prim + + (a b)

(+ a b))

In section ?? it is mentioned that reflectors and structure accessors that
might return data consisting of closures higher in the tower must check that
what they are returning is not the standard processor—in which case they must
make and return a copy of it instead. They use the following procedure to do
this:

166 CHAPTER 11. THE META-EVALUATOR

(defun unroll-closure (closure)

"We take a copy of the evaluator if it would be the

standard evaluator, so that the user program can’t get

at the standard evaluator to modify it. Otherwise we

return the closure as it is."

(if (eq closure standard-evaluator)

(let ((the-closure (copy-closure closure)))

(setf (closure-number the-closure)

(incf closure-counter))

the-closure)

closure))

It is used in the structure accessor that definitely returns data from further
up a tower:

(defun closure-evaluator-function (closure)

"Return the evaluator of CLOSURE."

(unroll-closure (closure-evaluator closure)))

and in anything that might modify a closure (accessed through some other
means, such as as a component of a language) in case that closure is the standard
evaluator:

(defun closure-type-evaluators-setter-function (closure type-evaluators)

"Set the type-evaluators of CLOSURE to TYPE-EVALUATORS"

(let ((modifiable-closure (unroll-closure closure)))

(setf (closure-type-evaluators modifiable-closure)

type-evaluators

(closure-original modifiable-closure)

modifiable-closure)

modifiable-closure))

funcall is a particularly important operator, as it is part of the general
evaluation mechanism. It evaluates its arguments, and creates a new closure
by instantiating the closure held in its first argument. The remaining evaluated
arguments are placed on the end of the values list (pushed as onto a stack) and
the closure placed on the end of the list of closures run at that level (that is,
pushed onto the return stack). The current meta-evaluator is called to evaluate
the new closure—that is, to continue evaluation with the new closure as the
current evaluation point.

Note that since many languages require their arguments to be evaluated
from left to right, but pushing them in order of evaluation leaves them in the

11.5. OPERATORS AND THEIR SHADOWS 167

wrong order on the stack, we must in effect collect the evaluated arguments
into a list which we reverse before pushing its contents onto the value list. In
practice, this is done more efficiently by moving to the new end position of the
stack, and filling the values in in reverse order, as explained on page ??.

Here is the code of funcall-helper:

(defun funcall-helper (expr level cont)

"Interpret a LEVEL that wants to do a funcall."

(let* ((values (closure-values cont))

(nvalues (value-list-length values))

(callee-name (second expr))

(callee (evaluate-by-evaluator-of-level

callee-name

level))

(instantiated-callee

(if (not (closure-p callee))

(error

"funcall-helper: Platypus function ~S ~

(derived from functor ~S in level ~S) ~

is not a closure~%"

callee callee-name level)

(copy-closure callee)))

)

(setf (closure-number instantiated-callee)

(incf closure-counter))

(eval-and-push-sub-exprs (cdr (expression-tail expr))

level)

(let ((nvalues-incl-args (value-list-length values)))

(setf (closure-values instantiated-callee)

values)

(setf (closure-fluid-environment instantiated-callee)

(closure-fluid-environment cont))

(setf (closure-evaluator instantiated-callee)

(closure-evaluator cont))

;; Put the new call record onto the stack of the

;; current level

(push instantiated-callee

(level-call-record-stack level))

168 CHAPTER 11. THE META-EVALUATOR

;; Let the underlying evaluator continue

;; evaluating. This is like handing the new

;; code-vector address over to the program

;; counter to be run, in a conventional machine.

(let ((funcall-result (call-meta-evaluator level)))

;; put the activation stack back to normal

(pop (level-call-record-stack level))

;; pop the args

(pop-below values nvalues-incl-args nvalues)

funcall-result))))

Since procedure calling is so central to the system, for efficiency another
operator, funcall1, is provided that does a funcall an extra level lower down
the tower. This is suitable for use as the entire body of the in-tower definition
of funcall. It evaluates its arguments to get to the level need, to pass them on
to funcall-helper, which it then calls. Its implementation is as follows:

(defun funcall1-helper (expr level cont)

"Interpret a LEVEL that wants to do a funcall1, that is, to

interpret the interpretation of a funcall. funcall1 is provided for

use by interpreters only, really."

(let* ((res nil)

(cont-values (closure-values cont))

(cont-value-1 (nth-value 1 cont-values)))

(let* ((lcc (level-current-closure cont-value-1))

(lcx (closure-continuation-expression lcc)))

(setq res (funcall-helper

lcx

cont-value-1

lcc))

res)))

and its use in the in-tower definitions is this:

(platypus-defprim funcall funcall-helper (fun &body args)

(funcall1 fun args))

Another use of this procedure is that made by the standard evaluator and the
meta-evaluator to convert unknown operators into funcalls:

(platypus-defprim

:default

convert-missing-op-to-funcall-helper

(fun &body args)

(funcall1 fun args))

11.6. DEFINITION OF OPERATORS 169

The stack-based operators are defined in the same way as other operators,
but use in their helper procedures the macros with-popped-args, push-results
and with-popped-args-push-results, which are explained on page ??. Here
are some examples; not that they are similar to their Lisp-style counterparts,
but simpler in that they do not evaluate their arguments but just take what is
provided for them on the stack:

(defun ps-add-helper (expr level cont)

"Interpret a level that wants to do a PostScript add."

(with-popped-args-push-results

level

(a1 a2) ; the args

((+ a1 a2)) ; the results

; arbitrary body follows, may be empty

))

The if procedure, which has no “else” clause in PostScript:

(defun ps-if-helper (expr level cont)

"Interpret a level that wants to do a PostScript if."

(with-popped-args

level

(condition proc)

(if condition (with-level-interpret-ps-block level (cdr proc)))))

Almost all of the stack-style operators may be defined in this manner, making
their definitions generally succinct. It would, naturally, be possible to define
them in terms of stack-like operators, as is done in the PostScript-in-PostScript
implementation described in [?].

11.6 Definition of operators

The operators and their shadows are defined using the macros and procedures
presented in the following pages.

Definitions in towers

We need to make each definition in the context of a particular tower, to get
various bits of background for definitions.

170 CHAPTER 11. THE META-EVALUATOR

(defvar *platypus-definition-towers* nil

"A list of towers open for defining things in. New

definitions go in the topmost one of these. This is a

pushy equivalent to CL’s jumpy in-package system.")

(defmacro current-definition-tower ()

"Return the current definition tower."

’(car *platypus-definition-towers*))

Lisp to Platypus expression conversion

In Platypus’ closures’ expressions, local variables are referred to not by a name
(in the sense of a Lisp symbol) but by a number which is stored either as a Lisp
character value (as described in section ??) or, if it will not fit in the range of
numeric values denotable by characters, in a local-variable-reference structure.
The procedure lisp-to-platypus-expression takes in a lambda expression
with formal parameter names, in which Lisp let* constructs may be used, and
converts formal parameter and local variable references into the character or
structure form.

Whenever a let* form is found, it is converted into a let-local, which does
whatever its operator definition in the language at run-time provides: it should
evaluate its subexpressions, and append (push) them onto the value list. The
let*ted variable names are then added to the read-time local variables and for-
mal parameters list to be passed to recursive calls of lisp-to-platypus-expression—
this list is started with the formal parameter list on the outermost call to
lisp-to-platypus-expression.

This may be used for languages other than Lisp, as long as their parsers
produce locally scoped variable declarations in the same form as Lisp’s let*s.

11.6. DEFINITION OF OPERATORS 171

(defun lisp-to-platypus-expression (the-args the-body)

"Convert lambda-body-like expression with args

THE-ARGS and body THE-BODY from Lisp format to Platypus

format."

(typecase

the-body

(list

(if (eq (car the-body) ’quote)

the-body

(if (eq (car the-body) ’let*)

(let* ((bindings-list

(without-fluids (cadr the-body)))

(new-body (cddr the-body))

(all-the-args the-args)

(bind-exprs (map ’list

#’(lambda (binding)

(progn

(push (car binding)

all-the-args)

(lisp-to-platypus-expression

all-the-args

(cadr binding))))

bindings-list)))

(let ((new-expr (cons ’let-local

(cons bind-exprs

(lisp-to-platypus-expression

all-the-args new-body)))))

new-expr))

(map ’list #’(lambda (x)

(lisp-to-platypus-expression the-args x))

the-body))))

(symbol

(if (member the-body the-args)

(as-local-variable-index the-body the-args)

the-body))

(t

the-body)))

Making closures from parse trees

The procedure make-closure-with-expression takes an expression, in the
form produced by lisp-to-platypus-expression, and a tower, and returns
a closure ready to run that expression and suitable for instantiation in that
tower. Each tower includes a template closure, from which new closures by
default inherit components that are not specified explicitly when the closure is
created. The template closure normally must have as its evaluator the standard-
evaluator that is used in that tower, so that closures instantiated in the initial

172 CHAPTER 11. THE META-EVALUATOR

context of the tower will be shadowed by the meta-evaluator of that tower.

(defun make-closure-with-expression

(expr &optional (tower (current-definition-tower)))

"Make a closure for the current definition tower or

for a specified tower, with EXPR as its expression, and

the TOWER (if not the default one) as the second

argument."

(let* ((template (tower-template tower))

(closure (make-closure

:evaluator (closure-evaluator template)

:type-evaluators (closure-type-evaluators template)

:language (closure-language template)

:continuation-expression expr

:procedure-expression expr

:values nil

:lexical-environment (closure-lexical-environment

template)

:fluid-environment (closure-fluid-environment

template)

:level (closure-level template)

:original nil

:number (incf closure-counter)

)))

(setf (closure-original closure)

closure)

closure))

The fact that this closure is a static closure (see section ??) is indicated by its
closure-original field being eq to this closure itself.

Closures produced by instantiating this closure will have this closure as their
closure-original field.

Lisp-style defining forms

Platypus provides several defining forms in the syntax of its Lisp-like base lan-
guage, corresponding approximately to defun in Common Lisp. There are vari-
ants for defining ordinary functions, operators, and primitives—that is, shad-
owed operators. There are several ways of defining shadowed operators, accord-
ing to whether they require all their arguments to be evaluated automatically
before their provided code body is entered, and according to whether a named
existing Lisp procedure is to be used as the procedure to wrap into the whole
shadow code body, or whether the shadow code is to be generated automatically
directly from the code that it shadows.

There is much in common between all these kinds of defining forms, such
as the need to translate parameter and local variable references to the form
described in section ??, and they are implemented as macros which call the

11.6. DEFINITION OF OPERATORS 173

procedure platypus-defun1 to do the common parts of their work.
There are two optional (keyed) arguments to this macro, which indicate

whether the form being defined is to be shadowed (primitive), and whether it
is to be bound in the language (define-as-operator) or in the environment (as
a callable procedure). The callers of platypus-defun1 use various combinations
of these arguments, the only combination not used in practice being a shadowed
callable procedure—all shadowed procedures are normally run directly from the
evaluator, as operators, rather than being called through the funcall operator.

(defun platypus-defun1 (fun-name fun-args fun-body

&key primitive define-as-operator)

"Define a platypus function, called FUN-NAME, with

args FUN-ARGS and body FUN-BODY. Keyword argument

PRIMITIVE, if specified, specifies a lisp function with

which to implement this function. This is mapped in the

shadow map of the current definition tower."

(let* ((the-body (if (and (> (length fun-body) 1)

(stringp (car fun-body)))

(cdr fun-body) ; throw away docstring

fun-body))

(the-name (if (listp fun-name)

(cadr fun-name)

fun-name))

(the-env (if (listp fun-name)

(car fun-name)

(if define-as-operator

(tower-language

(current-definition-tower))

(tower-environment

(current-definition-tower)))))

(closure (make-closure-with-expression

(lisp-to-platypus-expression fun-args the-body))))

(when *print-platypus-defuns*

(format t "Setting defun in env: ~A~%"

the-env))

(platypus-set-environment-variable the-env the-name

closure)

(when (not (null primitive))

(when *print-platypus-defuns*

(format t "Setting primitive~%"))

(platypus-set-environment-variable

(tower-operator-shadow-map

(current-definition-tower))

closure primitive))

nil)) ; value to return from macro

174 CHAPTER 11. THE META-EVALUATOR

Defining ordinary procedures

This is the simplest use of platypus-defun1. At this stage in the definition
process, the procedure body must be a single form, rather than an implicit
progn.

(defmacro platypus-defun (fun-name fun-args

;;&body

fun-body)

"Define a platypus function, called FUN-NAME, with

args FUN-ARGS and body FUN-BODY."

‘(platypus-defun1 ’,fun-name ’,fun-args ’,fun-body))

Defining non-shadowed operators

platypus-defop is similar to platypus-defun, but it makes the definition in
the language of the initial context of the tower, rather than in its general envi-
ronment.

(defmacro platypus-defop (op-name op-args

;;&body

op-body)

"Define a platypus operator, called OP-NAME, with

args OP-ARGS and body OP-BODY."

‘(platypus-defun1 ’,op-name

’,op-args

’,op-body

:define-as-operator

t))

Defining ordinary primitives

platypus-defprim is the simplest way to define a shadowed primitive. It is sim-
ilar to platypus-defun, with the addition of the prim-name argument, which
is the name of the shadow procedure to run when interpreting this procedure
and finding that it is eligible for shadowing (see sections ?? and ??).

11.6. DEFINITION OF OPERATORS 175

(defmacro platypus-defprim (fun-name prim-name fun-args

;; &body

fun-body)

"Define a platypus function, called FUN-NAME, and

implemented by the lisp function called PRIM-NAME, with

args FUN-ARGS and body FUN-BODY. The primitive named by

PRIM-NAME is called with one argument, the level to

interpret."

‘(platypus-defun1 ’,fun-name ’,fun-args ’,fun-body

:define-as-operator t

:primitive ’,prim-name))

Defining control primitives

The following function is for use in a macro-expander, platypus-def-control-prim,
which is presented after it. It takes an expression template, which is a list
of names for successive sub-expressions of the expression, and produces a let-
binding list for binding those names to those parts of the expression. If do-eval
is true, the code returned has the sub-expressions evaluated in the context of the
level, accessible in the context in which this binding code is run, under the name
given by level-name, and the results of those evaluations are bound; otherwise
the un-evaluated sub-expressions are bound throughout.

For example, the description of the arguments for if, (condition then
else), given the name expr for the expression will produce the list:

((condition (nth 1 expr))

(then (nth 2 expr))

(else (nth 3 expr)))

whereas the description of the arguments for cons, which needs its arguments
evaluated for it, will expand to:

((a (eval-in-level (nth 2 expr) level))

(b (eval-in-level (nth 3 expr) level)))

where level is passed in as the name of the level in which to evaluate the ar-
guments.

176 CHAPTER 11. THE META-EVALUATOR

(defun make-control-arg-splitter (level-name

expr-name

arg-names

do-eval)

"Make a let-binding-list, in which the argument expr

bound to EXPR-NAME is split into its successive part

and bound, part by part, to the names in ARG-NAMES. If

the third argument, DO-EVAL, is non-nil, each argument

expr is wrapped in a call to eval."

(do* ((args arg-names (cdr args))

(arg (car args) (car args))

(arg-index 1 (1+ arg-index))

(let-list nil))

((endp args) (nreverse let-list))

(if (eq arg ’&body)

(progn

(setq args (cdr args))

(setq arg (car args))

(push (if do-eval

‘(,arg (eval-in-level

(nthcdr ,arg-index ,expr-name)

,level-name))

‘(,arg (nthcdr ,arg-index ,expr-name)))

let-list))

(push

(if do-eval

‘(,arg (eval-in-level

(nth ,arg-index ,expr-name)

,level-name))

‘(,arg (nth ,arg-index ,expr-name)))

let-list))))

The results of make-control-arg-splitter are used in the following macro-
expander:

11.6. DEFINITION OF OPERATORS 177

(defmacro platypus-def-control-prim (fun-name prim-name fun-args

&body fun-body)

"Define a platypus function, called FUN-NAME, and

implemented by the lisp function called PRIM-NAME, with

args FUN-ARGS and body FUN-BODY. The primitive named by

PRIM-NAME is called with one argument, the level to

interpret. If interpreted, the body has the parts of

the expression of the current continuation closure of

the argument level split out into the appropriate named

variables as specified by fun-args."

‘(platypus-defun1 ’,fun-name ’(int-expr int-level int-cont)

’(let* (,@(make-control-arg-splitter

’int-level

’int-expr

fun-args

nil))

,@fun-body)

:define-as-operator t

:primitive ’,prim-name))

Defining Lisp-like primitives

The Lisp-like primitives are those that require all of their arguments to be eval-
uated before entering the provided code body. The evaluation of the arguments
is done by some code which the following macro wraps around the provided
code body. The extra code calls eval-sub-exprs, which works it way along the
argument sub-expressions evaluating each one and returning a list made from
the results of these evaluations. eval-sub-exprs is presented in section ??.
This is used for the version that runs inside the tower. For the shadow ver-
sion, the argument evaluation is done inside the code fragments returned by
make-control-arg-splitters, which arranges this argument evaluation when
called with its do-eval argument non-nil.

178 CHAPTER 11. THE META-EVALUATOR

(defmacro platypus-def-lispy-prim (fun-name prim-name fun-args

&body

fun-body)

"Define a lispy platypus function, called FUN-NAME,

and with an implementation based on the lisp function

called PRIM-NAME, with args FUN-ARGS and body FUN-BODY.

The arguments for the call are evaluated by the wrapper

provided by this macro, and given to the function named

by PRIM-NAME."

(let ((shadow-name (intern (concatenate ’string

"frame-"

(symbol-name prim-name)))))

‘(progn

(compile

’,shadow-name

‘(lambda (expr level cont)

(let ((the-expr expr))

(apply #’,’,prim-name

(eval-sub-exprs the-expr level)))))

(platypus-defun1 ’,fun-name

;; ’,fun-args ’,fun-body

’(int-expr int-level int-cont)

’(let* (,@(make-control-arg-splitter

’int-level

’int-expr

fun-args

t))

,@fun-body)

:define-as-operator t

:primitive ’,shadow-name))))

Defining Lisp-like primitives based on a given expression

These primitives, like those defined by platypus-def-lispy-prim, have their
arguments evaluated before running the given code body, but whereas those call
a Lisp function that exists anyway, this macro platypus-def-lispy-expr-prim
also create the Lisp function from the expression provided, and compiles it.

11.6. DEFINITION OF OPERATORS 179

(defmacro platypus-def-lispy-expr-prim (fun-name fun-args

;; &body

fun-body)

"Define a lispy platypus function, called FUN-NAME,

and with an implementation based on the lisp expression

given as the function body, below, with args FUN-ARGS

and body FUN-BODY. The arguments for the call are

evaluated by the wrapper produced by this macro, and

given to the function supplied as FUN-BODY."

(let ((shadow-name

(intern

(concatenate ’string

"frame-"

(symbol-name fun-name)))))

‘(progn

(compile

’,shadow-name

‘(lambda (expr level cont)

(let ((the-expr expr))

(apply #’,’(lambda ,fun-args ,fun-body)

(eval-sub-exprs the-expr level)))))

(platypus-defun1 ’,fun-name

’(int-expr int-level int-cont)

’(let*

(,@(make-control-arg-splitter

’int-level

’int-expr

fun-args

t))

,@fun-body)

:define-as-operator t

:primitive ’,shadow-name))))

Defining static closures

As described in section ??, closures are used to represent procedures available
for calling. These are not true closures, as they do not have all of the fields
filled in—they are completed in the copy made when instantiating the closure.
When a closure is instantiated (by funcall-shadow, for example), it is copied
and completed. The closure-original field of the copy points to the original
from which it was copied, and this is used to determine whether the closure is
shadowed.

180 CHAPTER 11. THE META-EVALUATOR

(defmacro def-unclosure (name args

;;&body

body)

"Set NAME to a new closure with ARGS for its

arguments and BODY for its expression and the rest made

to distinguished nonsense values. This may then be

copied into towers having the rest of the slots filled

in as appropriate for that tower. It is used for

defining things that are useful in many towers. BODY

may have a docstring, which is thrown away."

#| (when (and (stringp (car body)) (not (endp (cdr body))))

(setq body (cdr body))) |#

‘(let ((expr (lisp-to-platypus-expression

’,args ’,body)))

(setf ,name (make-closure

:evaluator nil ; :no-evaluator

:language :no-language

:type-evaluators

:no-type-evaluators

:procedure-expression expr

:continuation-expression expr

:values :no-values

:lexical-environment :no-lexical-environment

:fluid-environment :no-fluid-environment

:original nil

:level nil

:number (incf closure-counter)

))

(format t "def-unclosure: ~S now set to ~S~%"

’,name ,name)

(setf (closure-original ,name)

,name)

;; This will work even if ,name is

;; standard-evaluator, so long as we do the

;; def-unclosure for standard-evaluator before any

;; other def-unclosures

(setf (closure-evaluator ,name)

standard-evaluator)

,name))

Placing definitions in towers

Procedure and operator definitions are placed in the appropriate part—language
or environment—of a tower. The tower they go in is the current-definition-tower,
which is the top of a stack of such towers. To change the tower into which defini-

11.6. DEFINITION OF OPERATORS 181

tions are placed, the procedures begin-define-in-tower and end-define-in-tower
are provided.

(defun tell-current-definition-tower ()

"Say which the current definition tower is."

(format t "Definitions now go into tower ~S~%"

(current-definition-tower)))

(defun begin-define-in-tower (tower)

"Make TOWER the current tower for definitions."

(setq *platypus-definition-towers*

(cons tower *platypus-definition-towers*))

(tell-current-definition-tower))

(defun end-define-in-tower (&optional tower)

"Revert to the previous tower for definitions. TOWER

is used to check the nesting of definitions, unless it

is nil."

(unless (or (null tower)

(eq tower (car *platypus-definition-towers*)))

(error "Closing towers for definition in the wrong order."))

(setq *platypus-definition-towers*

(cdr *platypus-definition-towers*))

(tell-current-definition-tower))

In defining the helper functions for stack-style operators (as used in PostScript
and FORTH) the macros with-popped-args, push-results and with-popped-args-push-results
are useful. They take values from the end of a level’s value list and bind them
to Lisp names, and push result of Lisp expressions onto the value list. Their
definitions involve many obscure macros, but, with some of the internal macros
expanded out, look like this:

182 CHAPTER 11. THE META-EVALUATOR

(defmacro with-values (some-vl &body some-body)

"Using the values list SOME-VL, run SOME-BODY."

‘(let* ((.values-list. ,some-vl)

(.values-last. (value-list-last .values-list.))

(.values-max. (value-list-max .values-list.))

(.values-data. (value-list-data .values-list.))

)

(declare (type fixnum .values-last. .values-max.)

(type values-list .values-list.)

(type simple-vector .values-data.))

(let ((the-with-values-result

(progn

,@some-body)))

;; assume only this has changed:

(setf (value-list-last .values-list.)

.values-last.)

the-with-values-result)))

with-values makes a particular value list into the current value list, as used
by the macros tt the-value-list-last, tt the-value-list-max, tt the-value-list-data,
and tt the-nth-value.

(defmacro with-values-of-level (some-level &body some-body)

"Using the values list of SOME-LEVEL, run SOME-BODY."

‘(with-values (level-values ,some-level)

,@some-body))

with-values-of-level builds on with-values, for the commonest use of it.
The expander for the macro with-the-popped-args needs an auxiliary pro-

cedure which returns a let binding list:

(defun make-popping-arg-list (args)

"Make a let binding list for ARGS,

with the current value list."

(let ((i (length args)))

(map ’list #’(lambda (arg)

(decf i)

‘(,arg (the-nth-value ,i)))

args)))

The bindings described in that list are executed in the provided code body by
the following macro:

11.6. DEFINITION OF OPERATORS 183

(defmacro with-the-popped-args (args &body body)

"Using the values list set by with-values-of,

pop the args needed to fill ARGS, and run BODY."

‘(let ,(make-popping-arg-list args)

(setf (value-list-last (the-value-list))

(decf (the-value-list-last) ,(length args)))

,@body))

This macro packages the above on into its most useful form:

(defmacro with-popped-args (level args &body body)

"Using LEVEL to supply the arguments,

pop the args needed to fill ARGS, and run BODY."

‘(with-values-of-level ,level

(with-the-popped-args ,args

,@body)))

The following definitions are the complement of the preceding ones—pushing
results back onto the stack. The results are specified as a list of arbitrary Lisp
expressions. The following procedure is used by the macro expander after it:

(defun make-result-placer-pushers (forms n)

"Return a list of code to put FORMS into the

current value list; for efficiency, we are told

that there are N forms."

(let ((i n))

(map ’list #’(lambda (form)

(decf i)

‘(setf (the-nth-value ,i)

,form))

forms)))

This macro runs through its arguments, which are forms (expressions), making
code to evaluate each form and push it onto the stack:

184 CHAPTER 11. THE META-EVALUATOR

(defmacro push-the-results (&rest results)

"Using the values list set by with-values-of, push &REST RESULTS."

(let ((added-value (length results)))

‘(progn

(when (>= (+ ,added-value (the-value-list-last))

(the-value-list-max)) ; is this enough?

(extend-value-list .values-list. ,added-value))

(setf (value-list-last (the-value-list))

(incf (the-value-list-last) ,added-value))

,@(make-result-placer-pushers results added-value))))

This packages it into its most useful form:

(defmacro push-results (level &rest results)

"Into LEVEL push &REST RESULTS."

‘(with-values-of-level ,level

(push-the-results

,@results)))

The following macro combines the two stack facilities above, and may be used
as the outermost part of each stack-based operator shadow body:

(defmacro with-popped-args-push-results (level

args

results

&body body)

"Using LEVEL to supply the arguments, pop the args

needed to fill ARGS, and run BODY, finally pushing

RESULTS onto the stack of LEVEL."

‘(with-values-of-level ,level

(with-the-popped-args

,args

,@body

(push-the-results ,@results))))

11.7. THE C IMPLEMENTATION OF PLATYPUS 185

11.7 The C implementation of Platypus

The C implementation of Platypus is a complete system implementation, not
relying on another language’s support system and library for memory manage-
ment and other facilities. Because of this, it is fairly large and complex, and
contains much code not directly relevant to the research.

C-Platypus keeps the entire tower system within a storage heap. The meta-
evaluator is not visible from the tower, and is a C program, which is not con-
tained within the heap. All values in the heap are tagged with their type; to
allow as much flexibility as possible, the tags are whole machine words (making
each C-Platypus word two machine words), and point to the type descriptors
concerned. Each object in the heap has a header, consisting of two C-Platypus
words: the length and the type. (The type of the type points to the type de-
scriptor for the whole object, and the value of the type is the object itself—a
redundant reference that turned out very useful for debugging.) This type sys-
tem makes all types first-class [?]. There is no distinction between predefined
system types and user-defined types.

The garbage-collector is a stop-and-copy one. It is complicated by the need
to update the shadowing tables in the meta-evaluator. As an interesting reflec-
tion curiosity, the heap is also an object that contains itself.

The shadowing tables use a perfect hashing scheme from addresses within
the heap to addresses in the meta-evaluator. The hash code is the low few bits
of the address in the heap, and the size of the hash table is a power of two. In
the initialization of the heap with the shadowed objects, and when the garbage
collector moves them, when a shadowed object is about to be allocated, if its
address has the same hash code as one that has already been marked in the
shadow map, words of memory are thrown away until one with a free hash code
is found. This typically wasted 22 words at any one time, and seems a small
overhead to pay for such a fast hashing scheme. However, it is not so suitable
for a system using many more mapping tables (environments) as the wastage
would go up, as would the amount of special treatment of objects done by the
garbage collector.

The meta-evaluator is similar to the one written in Lisp for Platypus89, but
is written in as a loop, instead of using the compiler’s tail-recursion removal.
It does not use a level-type-evaluators environment mechanism for evaluating
things of different types, but has it built in to a switch statement.

The shadow operators are implemented in a similar way to those in Platy-
pus89, but the C code that defines them must be pre-processed before compi-
lation, to insert some of the standard helper code for taking apart levels and
closures, and for evaluating arguments for operators that simply want all their
arguments evaluated.

186 CHAPTER 11. THE META-EVALUATOR

11.8 Summary of the meta-evaluator

Platypus is a trial implementation of a reflective tower-based evaluation system
in which data representations inside and outside the tower are the same. It has
been through two broadly similar implementation generations, one in C and one
in Common Lisp.

Dynamic typing is used throughout the system, both inside and outside the
tower. All objects in the tower are kept in a storage heap; in the C implemen-
tation this is scavenged by a stop-and-copy garbage collector, which must pay
attention to updating variables of the meta-evaluator as it moves the things to
which they point.

While several meta-evaluator variables point into the heap, it is not possible
for a program in the tower to find from an object in the heap what it corresponds
to in the meta-evaluator (although a meta-evaluator that makes this information
available could be written).

The meta-interpreter must contain:

• a meta-evaluator that mimics (shadows) the standard evaluator as well as
generating levels on demand;

• shadow operator definitions shadowing some of the operators in the tower’s
base language;

• and an argument evaluator for shadowing operators to use.

These are all fairly similar to their equivalents within the tower.
The meta-evaluator may be reduced to a very concise form built around one

function, which is appropriately very similar to the corresponding function for
the concise form of the standard internal evaluator for a tower. This function
consists of four procedure calls and two environment lookups.

The code for all the shadow operator definitions has much in common; in
particular, all operators that must evaluate all their arguments independently
share an argument evaluator mechanism. Such operators are built around prim-
itive procedures in the implementation language, by a macro-preprocessor, that
takes functions in the implementation language, and produces wrapper functions
for use as the shadow operators.

For the snark was a boojum, you see.

The Hunting of the Snark

Chapter 12

Results

12.1 Overview of results

In researching this thesis, I developed three implementations of Platypus, at each
stage having a different level of experience with reflective programming. The
three systems have the same underlying principles, but different implementation
technology. Each contributed some different things to my understanding of
practical and theoretical procedural reflection, whilst all agreed on the major
points.

Performance testing of Platypus took the form of running a set of simple
benchmarks—a mixture of the Griss tests and Gabriel tests [?] in Lisp and a
recursive picture “Circle Limit” in PostScript—on a variety of configurations
of the system. The same benchmarks were also run on conventional Lisp and
PostScript interpreters to provide a reference point.

The tests were run for each the two versions of the evaluator and meta-
evaluator—that is, the versions without and with the boojum and snark func-
tions. For each of these versions, the tests were run

• with the evaluation system in its initial state (in which the operators used
by the application are always shadowed directly);

• with the evaluator changed, but to an identical one, thus forcing another
level of interpretation to be added;

• with parts of the evaluator and some of the operators changed to make the
whole level use association-list based deep binding instead of Platypus’s
usual hash-table based shallow binding.

The expected results were that the performance of configuration in which the
evaluator and operators used by the application were shadowed directly would
be within an order of magnitude of the performance of the conventional Lisp
and PostScript systems, and the versions in which the evaluator and operators
used by the evaluator and operators were shadowed would be very much slower.

187

188 CHAPTER 12. RESULTS

12.2 The design ideas

Before developing the first implementation, I spent some time in devising a way
of representing a language interpreter in a manipulable form. My first attempt
used re-write rules to describe a language, but it soon became clear that, as well
as not being very expressive for describing most languages, they were also hard
to manipulate for reasoning about and computing with languages.

I experimented briefly with a message-passing representation of closures in
Lisp. I soon realized that, for manipulating languages, this was not much better
than the re-write rules, although, with each operator being an object, it was
some improvement.

Although the different possible representations for languages were the same
in the computational power, they were very different in their expressiveness.
Both of these forms lacked expressiveness in this problem domain. Expressive-
ness is hard to quantify, although for many pairs of expressions of the same
idea, one is often clearly more expressive than the other. Yet this is a subjective
evaluation, and it is difficult even to describe the parameters we use in deciding
expressiveness. Conciseness is, perhaps, an important factor: a good expression
of an idea is usually more concise than a poor one. This could be quantified
objectively by the number of terms used in the expression, as a poor match
between an idea and the language used to express the idea usually results in
extra terms that are present only to make up for the poor match. (Consider,
for example, using FORTRAN instead of Lisp for consed-list manipulation, or
a command shell language such as sh for Fourier Transforms.)

Interpretive closures

My third way of structuring a language for representation divided it into opera-
tors and proccesor, each being represented as a procedure. The closure operation
for procedures was extended to close over the language (environment of oper-
ators) and the evaluator, and thus this representation automatically provided
interpretive towers.

This was the representation I took into the first implementation (written in
Cambridge Lisp), which showed it to be basically suitable. I used the same repre-
sentation in C-Platypus, and extended it slightly in Platypus89, while still keep-
ing the same structure for the actual representation of languages—the changes
were concerned with tower representation and interpretation.

Meta-towers

The idea of many-dimensioned towers, or meta-towers, was important in design-
ing the system, and they are provided in Platypus89 as a compile-time option,
making a slight change in the performance.

The slight loss in performance brought about by adding meta-towers ap-
pears because the operation call-meta-evaluator (used in the real, compiled,
meta-evaluator) can no longer be simply a funcall in the substrate language,

12.2. THE DESIGN IDEAS 189

but must now switch on whether the meta-evaluator of the tower given as an
argument to call-meta-evaluator is shadowed by the real one. For simplicity
and efficiency, I used a different implementation of shadowing from that used
in the normal towers; when the meta-evaluator has not been reflected into, it
simply is the compiled one, and this is called with a Lisp funcall. Otherwise,
a Platypus closure is there, and a level is launched to evaluate it. The selection
here is done by a Lisp typecase form, although it would have been more con-
sistent with the rest of Platypus for it to be done by an environment—another
shadow map, in effect. The reason why the real meta-evaluator can be built into
the tower at this point is that this is the direct, and singular grounding point
of the tower. It would have been possible, although inelegant, to connect the
meta-evaluator of an ordinary tower to that tower by putting it in place of the
rolled-up boring section of the tower, and having the unrolling mechanism find
the thing from which to unroll copies from elsewhere. The asymmetry of the
direct connection seems more excusable in the light of the idea that, whereas
reified data structures continue indefinitely outward, the real meta-evaluator
must start from somewhere. This is not so much where the buck does not stop,
as where it starts!

The development of the meta-tower system was closely linked with the the-
oretical development of the type system.

The type system

Platypus is a dynamically typed system, providing dynamic typing to the lan-
guages it supports. It would be much harder to implement dynamically typed
languages on only a statically typed base, as static typing simply introduces a
pre-execution check, after which evaluation of the program may procede with
dynamic types (although all the values’ types will be predictable). Implement-
ing dynamic types on statically typed system requires the definition of a (static)
type including a (dynamic) type field and a value field that can contain values
of any type used in the system (and so must be of a union type—and thus not
strictly statically typed). Languages with static typing may have their type-
checking done when programs are read and converted into Platypus’ expression
representation.

In all the substrate languages (Cambridge Lisp, C, and Common Lisp), the
type system provided was not powerful enough in itself to support Platypus’
requirements directly. Common Lisp was the best here, lacking only the facility
for the programmer to add new atomic (non-structured) types, which would have
been useful for local variable indices; instead, string-characters (see sections ??
and ??) were used for this, as being a distinct type of integer that was already
available.

The first two implementations had double type systems, using both the type
system of the implementation language, and a separate type system for programs
running in the tower. In the first implementation, this was very confusing, as
the tower type system and the meta-evaluator type system were both dynamic,
and some code in the meta-evaluator used one system, and some used the other.

190 CHAPTER 12. RESULTS

In C-Platypus, this was not so confusing, as C’s type system is static, and the
static types were useful for ensuring that data stored in the tower could not be
confused with non-reifiable internal data of the meta-evaluator.

In the first two implementations, the type system of the implementation
language was concealed, sometimes with some effort, from programs running in
the tower.

In Platypus89, the type system of the substrate language is used within the
tower, which made the implementation very much quicker and easier both to
construct and to understand. Common Lisp’s type system is sufficiently similar
to that required by Platypus that this has proved to be a good strategy.

The uniform representation

Early on in designing Platypus, I decided that the representation of reified in-
formation handled by a program in the tower was to be the same as that used
for the same information when reflected. (In some systems, this is not the case.
For example, typical SmallTalk implementations have to construct reified stack
frames with some effort when asked for a stack frame. In Platypus, reifiers nei-
ther modify values nor construct new ones, except to realize levels, as described
in section ??—an activity which, from the application program’s viewpoint, is
not happening: it is backstage.) The success of this scheme depends on being
able to evaluate efficiently using data representations that are suitable for use
as reified data, as long as we generate all stack frames in heap. One representa-
tion is suitable for both uses. If we use conventional stacks, to avoid excessive
garbage generation, the simplicity of our reifiers is lost, and a more active reifier
is needed. Deciding which stack frames must be kept after returning from them,
and reifying them then, is probably an appropriate solution, but may well be
difficult to implement. This is discussed in [?]. In some cases, we know that we
can use the substrate system’s stack frames instead of allocating them in the
heap, as explained in section ??.

Shadowing

Shadowing is an essential part of tower interpretation, and so appears in all the
Platypus implementations. There are two approaches to implementing shadow-
ing:

• storing the shadow of a closure a field in the closure;

• not storing the shadow of a closure a field in the closure, but instead
recognizing shadowed closures from outside.

The second of these is better, since the shadowing information belongs on the
outside of the tower, and so should not be part of any object within the tower.

I used the first of these in the Cambridge Lisp implementation of Platypus,
and for C-Platypus switched to the second, to make sure that the tower remained
hidden. (C-Platypus does not reveal higher dimensions of towers.) Having full

12.3. THE IMPLEMENTATIONS 191

control of the storage heap, it was possible to make a perfect hashing system
from addresses of closures to their shadows, thus bringing the overhead of the
mapping system down to only a little more than that of structure access, involv-
ing, at the machine code level, just 4 instructions: a bitwise and, an indexed
load, a comparison, and another indexed load.

In Platypus89, I used a similar mapping system, although using Common
Lisp’s gethash (which is rather less efficient) instead of the perfect hashing
system described above.

It may be possible to make a further short-cut for speed, using numbers
stored in each closure, and doing a faster form of hashing based on the number,
perhaps like the address hashing used in C-Platypus. This avoids hardwiring
shadows into shadowed closures, while still providing very fast access from a
closure to its shadow.

12.3 The implementations

Platypus-0

Platypus-0, written in Cambridge Lisp, was extremely slow; at 1.2 seconds to
interpret (cons 1 2) (on an Orion-1, a machine of similar processing power to
an early Vax), it showed that the ideas were viable, while leaving open-ended
the question of whether an efficient implementation would be possible.

Platypus-0 provided a more sophisticated type system than the substrate
Lisp, using conses of (type . value) to represent single values. This made
the coding very confusing, as it was hard to keep track of whether a particular
value was a (type . value) pair, or a simple Lisp value (perhaps with the
type it had once had, removed). The very simple dynamic typing provided by
Cambridge Lisp was not really powerful enough to be helpful here.

C-Platypus

C-Platypus was written largely with speed in mind. Using an unusual hashing
system to map between the tower and the meta-evaluator, it set out to show
that it was possible to implement a tower efficiently with an absolutely pure
reified heap without any pointers out from the heap to the the meta-evaluator.

This implementation was never sufficiently reliable to perform extensive tim-
ing tests, but it seemed to be capable of evaluating simple Lisp and FASL (a
stack-based language oriented toward efficient construction of data structures,
used for loading Lisp programs) code without noticeable inefficiency.

C-Platypus built some very complex data structures when starting. These
were built entirely by hand-coded C routines, which were one of the major
reasons for moving back to Lisp for continuing the work. The initialization
code was very sensitive to changes, and difficult to maintain or re-organize. In
conjunction with the use of a statically compiled implementation language, and
the lack of higher dimensions of the tower, this made it impossible to extend the

192 CHAPTER 12. RESULTS

meta-evaluator once the tower had started to run. This is very much against
the spirit of true reflective systems! The difficulty of initializing the system was
one of the reasons for its being abandoned and superseded by a system built on
a more powerful and flexible substrate language.

One very definite result of this stage of the work is that it is important to
allow the building of the meta-evaluator incrementally, rather than providing
all the pieces and putting them together at once. Retrospectively, in embarking
on the C implementation of a tower, I should first have planned tools to extract
the initialization code from comments or macros in the rest of the source code.

The implementation of C-Platypus included two languages, a Lisp-like one
for general use (like the base language of Platypus89), and a FORTH-like lan-
guage for use in program loading (in Lisp terminology, a FASL reader—a simple
language for constructing data structures faster than can be done from a Lisp-
like language, as its syntax and semantics are even simpler than those of Lisp).

C-Platypus made no provision for higher dimensions of the tower. Partly
due to this, and partly due to the greater ease of development in Lisp, par-
ticularly concerning structuring and initializing the system, I proceeded to the
third implementation, Platypus89. This left C-Platypus insufficiently reliable
for timing results, so these are omitted from the result table given here.

Platypus89

Platypus89 was very much simpler to implement than the earlier systems, as
well as being much more powerful. Common Lisp provides the combination of
a reasonable type system (not quite present in C, and not present in Cambridge
Lisp) with incremental compilation and the evaluation facilities of the language
being made available at compilation time.

The technological contribution of Common Lisp made a great difference here,
but perhaps not as much as the further understanding of reflective interpretation
that I had developed while implementing C-Platypus, and while pondering it
afterwards. Two conceptual advances were most significant here:

• the mapping of types at successive levels of meta-towers;

• an understanding of higher-dimensioned towers.

Although structurally the former is but part of the latter, it is the former that
gave rise to the latter.

The implementation of Platypus89 includes a starter set of two languages:
a dialect of Lisp, and a subset of PostScript. Both of these have all their op-
erators defined directly in the base language of the system, although there is
nothing to stop a language from using a mixture of shadowed and non-shadowed
operators—indeed, for many languages this would be the case—it is desirable,
for efficiency, for a language’s input parser to use shadowed operators wher-
ever it can; for example, many languages will have a two-way conditional,
if... then... else..., for which the base language’s if operator may be
used; whereas FORTRAN’s subroutine bodies with GOTOs, including three-way

12.3. THE IMPLEMENTATIONS 193

arithmetic GOTOs, and calculated GOTOs; or traditional Lisp’s prog... go...
return... forms, are obscure and high-level enough—away from the natural
architecture of the system—not to match anything in the base language, and
these would be implemented by non-shadowed operators, that are always inter-
preted by the meta-evaluator.

Performance of Platypus89

To compare the performance of Platypus89 against other interpreters, I used as
the main benchmarks:

• the Griss tests for Lisp—a set of simple benchmarks testing the per-
formance of various parts of Lisp systems; I translated these from PSL
(Portable Standard Lisp) to Platypus89’s base language dialect of Lisp,
and wrote a few macros for Common Lisp to enable it to run the tests
from the same file.

• circle limit, based on a picture by M. C. Escher [?], for PostScript, the
only change required to the test file being renaming some tokens to avoid
dependence on case (as Platypus89 uses a Lisp readtable and the Common
Lisp reader system to read PostScript, it is case-insensitive, unlike real
PostScript).

Lisp performance

The Griss tests consist of many separate tests, each of which does one thing
many times. A table of the results for this is given below. The number of it-
erations for each test was chosen to bring the total time for the fastest version
(usually the Common Lisp interpretive evaluator—the interpretive implemen-
tation of the substrate language) to around 10 seconds for each test, the timing
resolution of the system being 10mS. The computer used for the tests was a Sol-
bourne SPARC system (Sun-4 compatible) and the Common Lisp interpreter
is that of Harlequin’s LispWorks, which is also the substrate system on which
Platypus89 was compiled and run for the tests.

The times are in seconds, and the column “cl/pl” is the ratio of speeds
between Common Lisp (LispWorks) and Platypus (in the version not using
the snark function), and the column “cl/snark” is the ratio of speeds between
Common Lisp and the snark-based meta-evaluator.

It can be seen from this that, for these tests, Platypus89 is around one-half
of the speed of a plain Lisp interpreter, or better—which is well within the
one-tenth (see section 2) that I chose as my acceptance level.

I had expected the version using snark to be slower than the other, because
of the extra procedure calls; at least one (evaluate-anything calling snark) at
each evaluation. This did not prove to be the case; the most likely explanation
is that making each of the most central routines smaller and simpler allows the

194 CHAPTER 12. RESULTS

substrate compiler to emit more efficient code, with a higher proportion of the
live values being in CPU registers at any one time, and less traffic between CPU
registers and the spill area (the part of the stack frame in which local values not
currently in CPU registers are stored).

The complexity of snark and the meta-evaluator routines build around it
is, as it turns out, closely matched to the number of registers available on the
SPARC computers used to run it for the benchmarks.

PostScript performance

Since Platypus’ PostScript implementation does not contain any actual graphics
routines, but instead outputs distilled PostScript1, it is harder to compare this
with a conventional PostScript interpreter. To give a more realistic comparison,
I compared it with still.ps, a program which redefines the graphics operators
of PostScript to output distilled PostScript instead of drawing the picture itself.
The PostScript system used for comparison is Harlequin’s ScriptWorks, and is
run on the same kind of computer as Platypus89 was for these tests—again, a
Solbourne SPARC system. The results of this benchmark are shown below:

This gives a performance of 42% of that of the ScriptWorks interpreter; as with
the Lisp, this is well within the 10% aimed for at the start of the project.

The commonly used PostScript benchmarks are not particularly relevant
here, as they are chosen primarily to test the graphics system attached to the
PostScript language, rather than the language itself. The program used here was
chosen for its complex control flow; it uses a simple picture drawn with a graphic
tools, with hand-written program for repeating that picture in a tessellating
pattern.

Performance with extra levels of interpretation

Performance testing of the reflective facilities of Platypus89 is, of necessity,
largely self-referential. Here are the results of adding one level of interpretation
in various versions of the system:

1Distilled PostScript is the result of running a PostScript program with the low-level draw-
ing operators redefined to output the PostScript code needed to call them, with the appro-
priate arguments. All co-ordinate system transformations have been done by the time they
are called, and loops in the input program do not appear in the output—they have been un-
rolled by this processing. Thus, a distilled PostScript program consists purely of a sequence
of drawing operators—no transformations, and no flow control beyond the implicit sequential
execution.

12.3. THE IMPLEMENTATIONS 195

The times are in seconds, and the column “pl/int ratio” gives the ratio of speeds
between Platypus shadowing the application’s evaluator and operators directly,
and it interpreting them. Likewise, “snark/boojum” ratio gives the ratio of
speeds for snark evaluating the benchmarks directly, and snark evaluating
boojum evaluating the benchmarks, and so is equivalent to the pl/int ratio of
the non-snark-based system.

Some of these figures seem anomalous, in that adding a level of interpreta-
tion improves the performance. This is not an impossibility; since a shadowed
procedure and its shadow are two different extensions (implementations) of the

196 CHAPTER 12. RESULTS

same intension (specification) it is possible, for example, for a shadow to be less
efficient than the interpreted procedure it shadows. In particular, the meta-
evaluator has been optimized (by helping the substrate compiler by giving it
more type information) especially heavily. However, the results are strange in
places. They cannot be explained away simply as timing inconsistencies, since
timing with a resolution of 10mS over a total of 10S gives an accuracy of 0.1%—
and some of the speed ratios are on the mysterious side by twice this much.

A considerable loss in performance might be expected from adding levels of
interpretation between the application and the meta-evaluator. However, since
the meta-evaluator consists of several small procedures, of which not all need be
changed for many practical uses of reflection, it need not all be interpreted, and
so the overhead is lower than it would be for reflective architectures of coarser
granularity of reflection. As the table shows, in practice the loss of efficiency
is just a few percent. Experiments with interpretation of the entire evaluator
showed a slowdown factor of around 40, so the fine-grained reflective changes
yield a considerable advantage when reflection into the interpreter is brought
into play, a the cost of extra procedure calls at all times, when compared with
an evaluator using a single procedure with a typecase control structure to do
this.

As may be expected, the boojum/snark-based system suffers less loss of
performance on reflection, as less of the system is given another level of inter-
pretation by each change. This is the positive side of the expected trade-off, but
as explained on page ??, the negative side of the expected trade-off turned out
to be another positive in the realized trade-off, and so, at least in this situation,
the snark-based evaluator is the faster of the two.

Room for improvement?

An evaluator built around boojum and snark is highly parameterized, and thus
inherently difficult for a compiler to optimize as well as it can an ad-hoc evalu-
ator.

Changes to the levels of optimization allowed to the compiler, particularly
in critical areas such as the evaluator itself, affected the performance by several
percent. These changes include switching on or off various checks made by the
compiled code, and adding type declarations that promise to the compiler that
the expressions declared will be of specific types.

Although in general I expected code in which the same functionality was
packed into fewer procedures (because of using fewer function calls), in practice
smaller procedures allowed more effective use of CPU registers, and this version
was slightly faster.

12.4. TIME AND SPACE USED 197

12.4 Time and space used

Profiling—where does the time go?

A statistical profile of the snark version of the evaluator, running the Griss
tests, revealed that the following functions were on the top of the stack 1% of
the time or more:

The profile is taken by examining the stack on a regular timed interrupt. The
third column indicates how many times the function was found anywhere on the
stack (counting multiple times for multiple appearances) and the fourth shows
this as a percentage—thus, something always present twice on the stack will
show as being on the stack 200% of the time. The next two columns show the
count and percentage for the procedure being on the top of the stack. Also no-
ticeable in the profile was the system procedure SYSTEM::DUMMY-STRUCTURE-ACCESSOR,
which implements access to defstructed data. It was called 166919089 times,
but did not occupy the stack even 1% of the time, being called in such a way
that it does not show in its own right (as a machine-code subroutine, rather
than as a conventional compiled procedure). gethash (disguised as lookup in
the listings in section ??) occupies 11% of the time, which is much what I had
expected. snark takes 35% of the time (including the time spent in structure
accessors, because of the calling structure of the substrate system—they do not
appear on the stack in their own right). SYSTEM::ARG-IS-SAFE is part of the
implementation of Common Lisp’s apply—it checks that the last argument (the
list of further arguments to the function) is not a circular list. (This has since
been made more efficient, which would affect both the timings and the profiling;
but the newer version of the substrate system inlines many functions that we
are interested in the appearance of on the profile, and so is not used here.)

The functions named —frame-x— are shadow procedures for the operators

198 CHAPTER 12. RESULTS

x. These are all Lisp-like operators, which evaluate their arguments. The time
for the evaluation of these arguments is included in the time for which their
procedures are on the stack, since the argument evaluator is called from within
the —frame-x— procedure. (See section ?? for details of how the —frame-x—
procedures are defined.)

Code size and distribution

The Platypus89 system is implemented in around 5000 lines of Lisp, not in-
cluding the large comments that make up the running text in sections that are
presented in this thesis. Since the core of the system (as presented in section ??)
is so simple, this leaves a lot to be accounted for. Where does all the bulk go?

A large piece of the system—about one third of the total—is the shadow
procedures for the base language, and another one-sixth sets up the implemen-
tation of the in-tower equivalents of these—the shadowed procedures. Thus,
about half of the system is the implementation of the base language, rather
than of the generic language framework.

One-sixth of the code defines the data structures used in the tower, and
accessor functions and macros for them. Another one-sixth defines syntactic
extensions to Lisp, and defining forms for setting up procedures, operators and
shadowing. About half of the remaining one sixth is the actual core of the Platy-
pus89 evaluator, and the rest is a variety of miscellaneous support functions.

I consider this to be reasonably concise for an implementation of a language
framework and reasonable subsets of two real programming languages, although
it is in part parasitic on its substrate language, Common Lisp, of which, for
example, the garbage collector is needed.

Further routines needed to make a standalone system

Platypus89, as it stands, relies on the substrate Lisp system for several runtime
facilities, as well as for compiling the real meta-evaluator. In particular, it needs
the storage allocator, the garbage collector, and the input/output system.

One thing not present in Platypus89 is a complete type definition system,
such as defstruct in Common Lisp. This would have to be provided—but it
can, of course, be provided by an application program and reflected in.

Platypus89 also depends on the substrate system for storage management,
that is, allocation and garbage collection. C-Platypus provided these itself,
which was complicated by the meta-evaluator being effectively in a separate
address space from the evaluator, so the garbage collector (which was of the
stop-and-copy variety) had to update the meta-evaluator’s pointers into the
heap as a separate action from normal block movements.

12.5. CHANGES NEEDED TO SUPPORT NON LISP-LIKE LANGUAGES199

12.5 Changes needed to support non Lisp-like
languages

When I first wrote Platypus89, its Lisp-like base language was the only language
which it ran. On adding PostScript, I changed some parts of the common meta-
evaluator to make this easier. The most significant of these changes was the
reversing of the order of the variables in each apparent frame of the stack, so
that the first argument (from Lisp’s point of view) is also the first argument
from PostScript’s point of view. This change was not connected at all with
reflection or evaluation, but purely with mixed-language operation.

12.6 General results

Most procedural languages map readily onto reflective systems. The worst mis-
match between conventional languages and a reflective interpreter is that it is
natural to design reflective languages such that all calls are reflective—or rather,
such that all procedures take the tower state as their argument, and return a
new state—which does not map well to conventional procedure calls. With
hindsight, I can see that this problem could have been tackled with towers and
meta-towers.

Parameterized evaluators and meta-evaluators prove to be remarkably sim-
ple, particularly when each has a recurring part that may be isolated into a
procedure in its own right. These procedures—representable as 4 and 12 lines
of Lisp respectively—may be seen as refined representations of what evaluation
and meta-evaluation are. Having been found, they seem intuitively very natural
procedural realizations of these functions.

Debugging on a reflective system

A reflective system provides access to more information than a conventional
system, and the amount of information displayed when tracing execution, get-
ting backtraces and inspecting values turned out to be to voluminous for many
purposes. However, debugging in terms of a specific language or situation can
be done with more selective display of information.

The information provided is also in terms of Platypus’ own model of execu-
tion, and may be at a lower level (in conventional terms, not reflective!) than an
application programmer might expect. The raw data may need to be processed
back into terms of the original language—which could be regarded as a form
of decompilation, although not all of the data provided is program code. This
decompilation will also reduce the bulk of data to be examined; for example,
the insides of languages might not be shown when working in the context of a
single language.

Decompilation of reified data should be quite general, and capable of produc-
ing sensible debugging printout into each language from any language wherever

200 CHAPTER 12. RESULTS

the equivalent facilities are available in both. This makes it possible, for exam-
ple, for someone working in Lisp to debug a PostScript program without having
to know PostScript syntax. The PostScript can be displayed as Lisp, and the
interpreted definitions of the PostScript operators may be used as explanations
of the PostScript language.

What debugging techniques were useful?

A major problem with debugging any of the Platypus implementations was
the amount, or complexity, of the data being handled. A full backtrace of
the stack, with all procedure arguments being printed, was too voluminous to
be manageable, although there were a few occasions when it proved necessary.
The bulk was partly because of the depth of the call stack, with many calls
to each of the central evaluator routines active at any one time, and partly
because of the size of the printed representation of each of the objects. The
most useful part of a level to print out was the top entry of its call stack—
a closure—and the most useful parts of a closure were its expression (printed
as its procedure expression, with a marker pointing at the sub-expression that
is currently the current expression) and its closure number, and the closure
number of its evaluator. The closure number field was originally introduced for
debugging, but subsequently also used for other things; it is a number that is
issued from a counter every time a closure is allocated, and so identifies closures
uniquely in their printed representation, making it visible to the programmer
whether a closure is eq to some other closure.

At some stages of the work, it was useful to make the meta-evaluator print
when it was doing a level-shift, and funcall-helper print when it was called.
More general tracing than this was too voluminous to be helpful in most cases.

Backtraces of the meta-evaluator’s (Common Lisp) stack were rarely useful,
as the central meta-evaluator components called each other to such a depth of
indirect recursion that it was difficult to work out, and to remember, what each
invocation on the stack was there for.

A breakpoint operator, which used Common Lisp’s break function, provided
a read-eval-print loop in the substrate language, which was useful for inves-
tigating the tower contents interactively at various points in the tower’s appli-
cation’s execution—this was often more convenient than bulky non-interactive
printouts of the tower contents.

Occasionally it was useful to set a global variable in the substrate language
to the value passed through a particular point in the meta-evaluator, so the
last value that had appeared in that place could be inspected interactively at a
breakpoint or after a crash.

An anecdotal result on resilience

On encountering a bug in gethash on the substrate Lisp system, which pre-
vented the meta-evaluator from finding the shadow for an operator, the meta-
evaluator went into deep recursion to interpret it from the shadowed definition

12.7. SUMMARY OF RESULTS 201

(as distinct from the shadowing definition.) I spotted this while it was running,
broke into the execution, patched around the gethash problem, and resumed
execution from the break. The tower now shrunk back, shedding the unwanted
levels of interpretation, and carried on as if nothing had been wrong.

12.7 Summary of results

Platypus has proved to be a practical interpretive system for Lisp-like languages,
and promises to be able to run at speeds comparable to other, non-reflective,
interpreted Lisp systems—it is already well within the factor of ten that I chose
initially as a suitable limit for regarding this new interpretation technique as
practical. There is certainly promise of being able to improve the performance,
and I would expect to reach speeds similar to those of non-reflective, single-
language interpreters. The usefulness of dynamic typing is clearly evident, and
the appropriateness of implementing reflective interpretation by shadowing has
been demonstrated.

Working with mixtures of two type systems, one for the substrate language
and one for the tower, was particularly confusing, and this should either be
avoided, or handled with careful planning, in future work in this area.

The amount of garbage generated is a potential problem, as all stack frames
are, in principle, built on the heap. The problem is reduced by using the stack
frames of the substrate system to store some of the data that might have oth-
erwise needed more frames to be built for very short-term use.

Initializing the system is complicated by the number of cross-references and
self-references that must be set up. It would be useful to have some program
tools for generating (or gathering) the initialization code automatically from the
rest of the source code.

It is possible to produce very compact versions of both the evaluator and
the meta-evaluator, these being based on a pair of functions, boojum and snark,
that appear to encapsulate the essence of evaluation and meta-evaluation respec-
tively.

And I gave my heart my heart to seek and search out by wisdom
concerning all the things that are done under heaven: this sore travail

hath God given to the sons of man to be exercised with.

Ecclesiastes 1:13

202 CHAPTER 12. RESULTS

Chapter 13

History and future; related
work; observations

Reflective systems have grown in part from a desire to make a tidy but practical
model for the meaning of interpretation, and in part from the need for power-
ful language and program development and debugging tools. Systems such as
SmallTalk [?] have demonstrated the usefulness and flexibility of reflective in-
terpretation, as well as its practicality, while systems such as 3-Lisp [?] have
shown their power and expressiveness.

As the results of this thesis, and other work on reflective interpreters, have
shown, implementation of reflective interpreters is now established as feasible
and reasonably efficient.

13.1 Other recent developments in interpreta-
tion

Reflection is one of a group of computational techniques that have been explored
recently. Others include partial evaluation (mixing) [?] and abstract interpre-
tation [?]. All these techniques are to some extent applicable to a variety of
language styles (algorithmic, functional, logical).

13.2 Possible further work

Tower implementation

Many variations are possible on the theme of Platypus-like reflective language
implementations. Some of these concern implementation details, in particular
the mechanism by which an object in one tower is connected to any shadow
that it may have in the next meta-level. The possibilities here include

203

204CHAPTER 13. HISTORY AND FUTURE; RELATED WORK; OBSERVATIONS

• A shadow map with a perfect hash, as used in C-Platypus. This is efficient,
and hides the shadowing mechanism, but places strange requirements on
the storage manager.

• A shadow map with a conventional hash table, as used in Platypus89.
This is slow, but, like the system used in C-Platypus, hides the shadowing
mechanism, which is important because it avoids making shadowed objects
any different from other objects.

• Pointers from shadowed objects to their shadows which has the disadvan-
tage of making the shadowing part of the shadowed object, rather than
part of the shadowing system, but is efficient. This may be done in two
ways:

– All objects have a shadow slot built into their representation, which
takes more space for the whole system. Objects without a shadow
have a distinguished null value in this slot.

– Only shadowed objects have a shadow slot, which means that they
must be distinguished (perhaps by tag bits) from other objects of
the same type.

Building the shadowing into each shadowed object works for systems with
flat second levels, and for those with towering second levels that do not
share representations between levels, but makes it impossible to repre-
sent more than one level of shadowing directly, and would also make it
impossible to have multiple meta-evaluators as suggested in section ??.

Another implementation technique is to replace the boring section of the
tower directy with its shadow (as used in Platypus for meta-tower reflec-
tion), and have the procedures that move along the tower recognize this
and hide it by returning instead copies of the repeating element of the
boring section. This is not very different from the present system, but
should allow slightly more efficient evaluation.

Meta-towers

Platypus89 implements one dimension of meta-towers, but does not go beyond
the ω2 + 1 tower. This would be a simple experiment, but should probably be
done in conjunction with making Platypus89 more efficient. Work with such a
system might well await the development of a better user/programmer interface
to reflection, perhaps with graphical output to draw towers.

Better integration with the substrate language

Full implementation of meta-towers would fall out naturally if towers could
be called as if they seemed to be ordinary Lisp functions to the substrate Lisp
system. It might be possible to represent them as Lisp closures for the substrate
system, so that they would become callable.

13.2. POSSIBLE FURTHER WORK 205

It would be possible for a tower reflective system based on a substrate lan-
guage such as Lisp (with incremental compilation) to make new primitives by
compiling functions defined within the tower by calling a primitive operator that
calls the native system compiler to make the shadow definition, and installing
in the language and the shadow map to make it accessible as a real primitive.
(The usual rules for when it is run as primitive and when it is interpreted will
apply.)

Further applications of reflection: reflection with mixing

It is in principle possible to use the architecture described here to build an
interpreter mixing system using some of the ideas from [?]. With our simple
and regular program and language architecture, we can make this much simpler
than the partial evaluator presented by [?]. This results not in a full mixer
function, but in a compilation system; for each node of the expression tree, we
expand the node out using the operator definition closure for that node—an
inlining of the operators. There are two notable restrictions on this operation:
the procedure being compiled must not change its expression reflectively; and
all the operator definitions must be in the same language as each other, since the
resulting closure will be in the language used to define the operators, and each
closure is allowed only one language. (This second restriction may be relaxed
at the cost of having to merge several languages, with automatic renaming of
operators where necessary.)

If operators are provided to escape entirely from the meta-tower system
down to the real substrate system (in Platypus, this is Common Lisp), it should
be possible to generate real compiled code from any executable procedure (that
is, one using only grounded definitions) that does not reflect into its expression
or interpreter, by repeated substitution of operators as described above, until
operators shadowed by the real substrate are reached. At this point, code
in the real substrate language may be substituted (possibly from the shadow
definitions, but it may be necessary, or at least better, to have other code for
this), and the results passed to the substrate’s native compiler. The result of
this compilation may then be put into the appropriate shadow maps, if it was
generated from a closure used as a type-evaluator or as an operator.

Using these techniques, a program-tuning system could be written, that runs
a program (possibly its caller) on an interpreter that does time- or call-counting-
profiling, then arranges for new primitives to be installed, if possible, to make
that program run faster.

Register-based implementation

It is possible to compile reflective programs to an abstract machine code, or to
real machine code using a model of execution suited to reification. A register
model that might be suitable; it could have a group of working registers sim-
ilar to those of the SECD machine [?], and reification would read from those
registers, and reflection write to them. A possible set of registers is:

206CHAPTER 13. HISTORY AND FUTURE; RELATED WORK; OBSERVATIONS

• code: a series of instructions. This corresponds to the Control register of
the SECD machine, and the procedure-expression of Platypus’ closures.

• code index: the current index into the code. With the code register, it
is equivalent to the continuation-expression of the current closure in
Platypus.

• evaluator: a procedure to call to implement the current closure. Shad-
owing can be implemented by letting each shadowed closure be its own
shadow. For such closures, the evaluator’s closure is the closure’s code
itself, and that code is the same as the underlying machine code. This is
equivalent to the evaluator of Platypus’ closures.

• type-evaluators: an environment binding type names to the closures
implementing the evaluation of those types.

• values: a series of values, used for procedure arguments and results, and
for local workspace. This is equivalent to the Stack register of the SECD
machine, and to the values of Platypus’ closures, and, as in those closures,
if a closure represents an interpreter, the closure it interprets is passed to
it as its first argument.

• language: a map from instructions to instruction definitions. This is used
to interpret each instruction in the code. For procedures that are their
own shadows, the language is ignored, since self-processing procedures are
implicitly written in the underlying machine language. This is equivalent
to the language of Platypus’ closures.

• environment: the environment in which non-local variables are to be
found. This is equivalent to the Environment register of the SECD ma-
chine, and the environment of Platypus’ closures.

• dump: the chain of saved register sets at this level of interpretation. This
is equivalent to the Dump register of the SECD machine, and to the list of
saved closures in Platypus.

This model allows reflection to take place as in Platypus, but can potentially
run faster. It may be possible to compile the standard evaluator down to real
machine code, using real machine registers for the abstract registers listed above.
Many modern computers have enough CPU registers for this to be possible, and
I propose to follow this line of research further.

Another use of compilation with reflection is for producing more efficient
versions of programs that were developed using reflective interpretation.

Object-oriented programming

I have deliberately avoided the object-oriented style in developing Platypus,
particularly for Platypus89. This was to emphasize the point that reflection
and objects are completely separable—Platypus works in terms of values rather

13.2. POSSIBLE FURTHER WORK 207

than objects. This point having been made, it would be interesting to use an
object-based style in implementing such towers. On a Lisp substrate, such as
Common Lisp with CLOS (the Common Lisp Object System) this would provide
a simple way of integrating the tower with the substrate Lisp, as towers could
simply be a kind of self-evaluating object.

Efficient use of heap

Platypus generates all stack frames on the heap, which results in a high turnover
of heap storage. This problem is to some extent in all reflective interpreters,
as any function may have its stack frame returned as a result. It has been
solved in practice in some SmallTalk implementations [?], which try to use real
stack frames whenever possible, and convert them to heap objects as needed.
Platypus could be modified to handle stack frame generation more efficiently.

A more thorough theoretical framework

The complexity theory describing meta-tower evaluation could be developed
further, and could be extended to include the complexity of the shadowing
mechanisms, thus describing the evaluation time for whole meta-towers.

Lexical and syntactics aspects of languages

As presented here, Platypus requires programs to be presented in the form of
parse trees, represented as Lisp expressions (although it does include a modi-
fication of the Lisp parser, to read PostScript). A natural extension would be
to include a facility for defining the lexical and syntactic aspects of a language
to a flexible parsing mechanism, which would be able to read programs in the
conventional syntax for their language, into the internal parse-tree form. The
techniques for this are already well-developed [?] [?] but are not usually fitted
into a Lisp-type framework.

Ideally, the parser control system should allow the listing of programs from
the internal representations into the usual textual format, for debugging. In
some cases it may be possible to print out in one language a program that was
originally read in another, which, in a mixed-language system, allows program-
mers to read routines listed in a backtrace, for example, in the language with
which they are most familiar. The ability to do this depends on the rôles of par-
ticular operators being recognized—which, as longs as the procedures preparing
the parse trees try to use base language operators where possible, may be quite
straightforward.

A systematic framework for syntactic analysis could be provided, perhaps
using a mechanism like the “source code transformations” used by some com-
pilers, including some Lisp compilers. These might also be used to effect partial
compilation, and be linked closely to operator definition bodies for interpreted
operators.

208CHAPTER 13. HISTORY AND FUTURE; RELATED WORK; OBSERVATIONS

13.3 Higher-level tools

Reflection has been used in conjunction with inspection tools, such as the
SmallTalk browser system. This is suitable for flat reflective systems, but tools
working at a more abstract level may prove necessary for working with full tow-
ers and meta-towers. In particular, the amount of information available can be
overwhelming, and some means of focussing interaction on particular parts of a
meta-towering system may be necessary, and, with that, means for navigating
around the meta-tower.

13.4 Further applications

Reflection has so far been used largely within the field of programming language
research, and has not been applied significantly to other areas of Computer
Science. Fields in which it could prove useful include:

• The organization of large software systems (including distributed sys-
tems), and fault analysis and circumnavigation

• Object-oriented simulation

• Explanation in deduction systems

13.5 Summary of history and future

Reflection is a young field of Computer Science and formal logic (and an older
field of philosophy) and there is much yet to be explored in it. Enough is now
understood to make an intuitive grasp possible, and, although always touching
on the meta-physical, it is possible to explain it formally, although formalisms
in common use today do not express reflective concepts very well.

In three main areas of research on the topic, two present considerable scope
for further research, and the other presents scope for development and enhance-
ment of ideas that are now established:

• Understanding and describing reflection is a large and very open field.
Some forms of reflection have now been described and analyzed exten-
sively, particularly those concerning procedural languages, but there is
much more to be done, particularly on declarative languages.

The mathematical description of infinite reflective towers, using transfinite
numbers, is an intriguing field which could be developed much further,
particularly with reference to the type system needed to represent such
towers.

• Implementing reflective systems has been researched, to the extent that
it is possible to build fully tower-reflective interpreters of similar speed
to their nearest non-reflective equivalents [?]. This could be developed
further, and applied more widely.

13.5. SUMMARY OF HISTORY AND FUTURE 209

• Application of reflection to real logical, computational and scientific prob-
lems has scarcely begun. To date, it has been used within the area of
language research, but little further.

The thing that hath been, it is that which shall be; and that which is
done is that which shall be done; and there is no new thing under the

sun.
Is there any thing whereof it may be said, See, this is new? it hath been

already of old time, which was before us.
There is no remembrance of former things; neither shall there be any

remembrance of things that are to come with those that shall come
after.

Ecclesiastes 1:9-11

210CHAPTER 13. HISTORY AND FUTURE; RELATED WORK; OBSERVATIONS

Chapter 14

Reflections

14.1 What did I find?

To interpret or evaluate something at one level, we find the appropriate attribute
of the thing and appropriate attribute of the level, look the first up in the second,
and apply the result of the lookup to the thing and the level.

But what does apply mean?

To interpret something in the frame of reference within which its meaning is
understood, do the selection and lookup as above, but instead of applying the
result, we lookup it up in the appropriate part of the higher level, and apply
that. But what, in turn, does this “apply” mean?

Thus leans the tower of meaning ever outward. The search for how meaning
is given to the level under scrutiny is infinite. However, to give meaning to a
level constructed, implemented and understood by the level concerned is one
easy step. This is because meaning, at this level of giving meaning, is in the
context only of the provider, and so can be given entirely by the provider, and
is valid to that provider.

So now we have two arguments; one to demonstrate that for a level to receive
its meaning into itself, it must first receive an infinite number of other levels,
and so cannot receive its grounded meaning and yet terminate; and the other to
demonstrate that to give meaning to a level does not make an infinitely distant
connexion, but an immediately proximal one.

How is it that both of these can be true?

One way to see a solution to this problem is to see that the meta-evaluator is
an ordinary, non-reflective program, running on an ordinary computing system,
whereas the system within the tower is running on an illusory reflective com-
puter, provided with the illusion of an infinite number of levels of interpretation.

211

212 CHAPTER 14. REFLECTIONS

The meta-evaluator can realize as many levels as the programs in the tower re-
quire (within the constraint of memory space). The apparent infinitude of the
tower system is simply generated by a perfectly ordinary piece of compiled Lisp
code.

14.2 Human reflection

It is natural to try to apply some of the ideas of procedural reflection to our
own human thought processes. For example, learning a new manual skill may
be seen as installing a new ability into our store of knowledge and reactions.
We reify our thought processes, and attempt to reify our intuitions, when pro-
ducing a rationâle for a decision. This area of reflection touches on very general
philosphical topics [?] [?] [?].

As well as the reification and reflection of ‘natural’ mental processes, we
perform rapid shifting of information up and down between our internal rea-
soning activities and external media such as paper, computers, counters, abaci,
coins. . . . We write and read information on external media not only to transfer
it between people and for long-term archival, but also to assist our short-term
memories in areas in which the brain, with conventional training, is generally
weak—performing a long division calculation on paper is an obvious example.
The amount of information to remember is not significant on the scale of the
brain’s overall memory capacity (whatever that may be), and the length of time
for which it must be remembered is only seconds or minutes, but for most people
the workspace storage for this must be external rather than internal.

However, we can devise and learn methods for performing mental arithmetic,
perhaps transforming an algorithm for externally assisted calculation into some-
thing easier for a particular individual to work with.

How can we describe such external storage in terms of the reflective devices
described in this thesis? We reify things from the conceptual form in which we
manipulate them, and reflect them into the state of the storage machine ‘on its
behalf’—or do we interact with the storage in a less mentalistic manner? We
read what is on the storage medium, perhaps reifying it in the process, and
reflect it back in to our brain’s internal storage. Here, the human agent is the
interpreter that implements the external device’s semantic storage abilities; but
it is also the user of the external storage, so it could be seen as a co-towering
relationship.

14.3 Reflective changes through other artifices

Finding it difficult to influence mood and mental activity directly by thinking
about them, people have accumulated a collection of ways of influencing them-
selves; for example, trying to become more alert and wakeful simply by deciding
to do so often proves ineffective; whereas implementing the intention by drink-
ing coffee is more reliable. This is, in one sense, an instance of reflective control

14.4. TOWER REFLECTIVE INTERPRETATION AND OTHER MODELS OF COMPUTATION213

of our own mental machinery.

14.4 Tower reflective interpretation and other
models of computation

Tower-reflective interpretation is just one of many possible models of computa-
tion. It does not make computable anything that was not already computable
(that is to say, a reflective interpreter cannot do anything beyond what a Turing
machine can do) but, intuitively speaking, it seems to bring in fresh possibilities
for describing action, language and meaning. What does it introduce that is
new, and does it make difficult anything that other systems make easier?

Tower-reflective interpretation takes an unconventional approach to defining
the meanings of programs. Whereas other systems offer a purportedly abso-
lute definition of meaning using a substrate that must be taken as representing
the framework (world-view) in which the program is taken to have meaning,
reflective interpretation aims to bring the framework into the structural field
on which the program operates, thus making the definition relative, and at the
same time enriching the structural field. Or does it remove the absolute quality
of the definition? Is such an absolute quality ever really present within any
computational system? Gödel’s theorem states that no mathematical system
can ever possibly describe itself. Perhaps one of the best ways of comparing the
power of descriptive systems is to examine their strengths at the very bound-
aries (event-horizons?) of self-description. But what is a strength here, and
how can we measure it? And how do we examine something that approaches
self-description? (On a more philosophical level, we may ask whether this can
only be answered absolutely by a wholly self-descriptive agent—and if so, do
we qualify ourselves, and by what means and in what frame of reference do we
allow ourselves that qualification?)

14.5 Summary of reflections

A reasonably efficient reflective evaluation system can emulate an infinite meta-
tower of evaluation, in remarkably few lines of Lisp. The most central of these
lines may be regarded as a refined form of generalized or parameterized evalu-
ator.

Perhaps somewhat fancifully, parallels may be drawn with non-computational
procedural activities, such as deliberation, and learning, in people.

The reflective approach to language definition avoids the conventional route
of definition in terms of something outside the the system, after the acknowl-
edgement that no system—neither computational nor mathematical—nor for
that matter those based on any other linguistic notation—can describe itself
completely. An outside reference—visible to the same observer—must always
be present, and we allow such a reference to be arbitrary, rather than from some

214 CHAPTER 14. REFLECTIONS

denotational framework from mathematics, for which in turn the same problem
of an outside reference also occurs.

Who hath ascended into heaven, or descended? who hath gathered the
wind in his fists? who hath bound the waters in a garment? who hath

established all the ends of the earth? what is his name, and what is his
son’s name, if thou canst tell?

Proverbs 30:4

Chapter 15

Recapitulation

This chapter is composed from the summaries that appear at the end of each
chapter.

15.1 Survey

The mechanisms of program interpretation may be analyzed into several ar-
eas, some of which are currently active research areas. These include pro-
gram transformation, partial evaluation, reflection, and mixed-language pro-
gramming. This thesis concentrates on the latter two.

Reflection—the causal link between actions of a program and its state, text,
behaviour and environment—combines ideas from interpretation theory, logic,
mathematical philosophy, linguistics, compilation, abstraction and other fields
of Computer Science. It also contributes new techniques which may be used in
these, and other, fields.

Mixed-language working is already common practice, but has not been for-
malized. Its existing use argues strongly for its usefulness, and the limitations
on its present use, and its current haphazardness argue for further development
of the ideas underlying it.

In common between these fields is the systematic definition of programming
language interpreters, and the idea of provision of meaning for a value in terms
of the context surrounding it (including its interpreter).

15.2 Introduction

Reflective techniques are based on two facilities: reification, by which a program
may examine its own code, state and interpreter; and reflection, by which it may
modify any of these. The connection that reflection makes between a programs
actions and its behaviour is causal in nature: modifications that a program
makes to its interpreter may cause changes in the way that the program is
interpreted.

215

216 CHAPTER 15. RECAPITULATION

Some programming languages, not normally regarded as reflective, provide
a limited range of reflective operations, such as access to the parameter list of a
procedure call. However, in a fully reflective program interpretation system, all
the features of any programming language can be implemented through reflec-
tive programming in the program, thus removing the distinguished status from
the interpreter of a language, and making it equivalent to any other program in
the system.

There are two kinds of reflection: simple reflection and tower reflection.
Simple reflection provides a program with access to its own code and state
and interpreter. Tower reflection also provides it with access to its means of
interpretation—that is, the mechanism by which a program is related to its
interpreter, and thence to its interpreter’s interpreter, and so forth. Tower
reflection is more general, and, not having an arbitrary stop after the first level,
is a more regular conceptual structure. Thus it is a more powerful tool for
reasoning about intensional reflection and about interpretation.

Although tower reflection deals with infinite structures, it is possible to im-
plement it with finite constructions. This thesis explores the infinite towers and
their finite implementations, and investigates whether an interpretive program-
ming system built this way can be made reasonably efficient, compared with
conventional, non-reflective interpreters.

In this thesis, we develop a reflective tower implementation, called Platypus,
and use it to demonstrate many of the points discussed.

15.3 Closures

At each level in our infinite tower, there are one or more procedures, of which
at any one time one will be active, and some (possibly none) will be on a list of
saved procedure evaluations to be returned to.

In common with many other language systems, we represent procedures by
closures, each containing the code of the procedure and any context that must
be carried with that code to interpret it.

To make explicit the interpreter of a procedure, we close over the interpreter
when constructing the closure of the procedure, and thence the rest of the tower
of which that evaluator is the lower end, thus making it contain the whole of
the context in which the procedure is interpreted.

A closure constructed this way we call an interpretive closure, since it en-
closes all the information needed for interpreting a procedure.

We use interpretive closures as the building block for constructing reflective
interpretive towers. Each level of a tower contains a closure (actually, a stack (or
list) of closures). The interpreter of an interpretive closure is also an interpre-
tive closure, as are the operator definitions. Closures are also used to represent
procedures available for calling. When a procedure is called, its closure is in-
stantiated by copying in onto the top of the stack, and filling in fields that come
from other parts of the level and the tower (such as the dynamic environment
within which it was called.)

15.4. LINKS BETWEEN LEVELS 217

15.4 Links between levels

The tower of interpreters is made up from links between adjacent levels of in-
terpretation. Reification and reflection are complementary operations, and they
use complementary links between tower levels. Since both links are set up by
parts of the calling mechanism, they always occur in pairs. These links make a
bidirectional chain throughout the tower.

Since a tower is an infinite structure, any computation involving all levels
of it cannot terminate. An application that uses reflection and does terminate
must therefore make reference to only a finite part of the tower.

Therefore, the infinite tower may be represented finitely, and it is possible
to reason about how many steps of interpretation are needed at one level to
implement each step of interpretation at a lower level.

To make the finite representation of an infinite string of identical levels, we
make the highest part of the tower into a circle, in which the same level occurs
again and again. Whenever an interpreter tries to reify the level that makes up
this circle, a hidden meta-evaluator makes a copy of the level in the circle, and
passes that copy out as the reification of the level in the circle. The application
can then modify the level it has been given, without upsetting the level that is
still in the circle.

Thus, the infinite part of the tower is stored compactly as a circle, which
is unrolled on demand to produce an infinite supply of identical levels. To the
application, this is indistinguishable from there being a real infinite chain of
levels at the top of the tower, instead of the circle and the unrolling mechanism.

The idea of the reflective tower and the means of reflection may also be
applied to towers of towers—that is, meta-towers. Meta-towers might at first
seem complicated to reason about, but an understanding of them brings a read-
ier understanding of ordinary towers.

The design of the meta-evaluator, and particularly the mechanisms for de-
tecting the need to unroll a new level from the circle and for unrolling the levels,
are a major new development of this thesis.

15.5 Languages in closures

As well as being a reflective system, our system is a mixed-language one, making
reified languages into part of the evaluation data that is available for manipu-
lation by application programs running on the system.

To make the language a variable part of the context of a closure, we divide
the interpreter into two parts, the evaluator, which is language-independent,
and the language.

To do this, we need an abstraction for languages. The abstraction must be
general enough to handle most languages reasonably well, and to handle all lan-
guages to some extent. Such an abstraction can be devised only in conjunction
with an abstraction for the programs in the languages. For the programs, we
choose to use parse trees, with each node being identified by its operator such

218 CHAPTER 15. RECAPITULATION

as if or +, and for the languages, we use environments binding operator names
to operator definitions.

This abstraction makes it easy to add new operators to a language, and also
keeps separate the general evaluator, thus making it possible to redefine the
evaluator independently from the language.

By making the language (the environment binding operator names to oper-
ators) of each tower level an explicit part of that level, we extend tower reflection
from being a tool for reasoning about interpretation of programs to also being
one for reasoning about languages and their interpretation.

15.6 The standard evaluator

The evaluator is the kingpin of a level. It links the parts of the level to each
other by using them to evaluate the level, and links adjacent tower levels by
making it possible to shift data from one level to another. Its form is tied to
the form of the tower level type.

Each evaluable infinite tower (in the scope of this thesis) eventually reaches
a repetitive stage (termed the boring stage by [?]), the procedure running in
each of these identical levels being known as the standard evaluator level.

The standard evaluator is a fairly small and skeletal procedure, needing, in
its most refined form, only six operators in its definition, most of those being
for structure handling. The rest of the evaluator is defined separately, partly in
individual operator definitions, and partly in some general evaluator procedures
that may be called by operator definitions. These general procedures are used
for evaluating arguments to operators. To do this, they invoke the evaluator
and language mechanism to do the evaluation in the appropriate context.

The concise form of the standard evaluator may be seen as a distillation of
the essential matter of a programming language interpreter (independently of
any particular language). This may be refined further to a procedure which
implements several of the main parts of the evaluator. This procedure consists
of three procedure calls and one environment lookup.

15.7 Types, abstraction, and representation

The ideas behind the towers’ type system are important in understanding tower
reflection. Types are an essential part of the way we represent values, and the
mapping from one tower level to the next is a representation of a value in one
system by a value in another. The basis for representing values in a computer
is Gödelization, in which digits in numbers denote words in a language.

The type system we use must allow the representation of procedures and of
procedural evaluation, as well as the representation of the application’s problem
domain. It must also be possible to represent the infinite towers and meta-towers
used in reflective evaluation.

15.8. BUILDING LANGUAGES WITH REFLECTION 219

The system must provide operations on types concerned with reflection (that
is, types for objects representing parts of the tower) as well as for the types of
objects normally handled by an interpreter. We divide types into two kinds:
simple and compound.

A few types are of particular importance in a reflective tower. Closures are
the central type. Other important types include expressions, environments and
value lists.

As information is moved between levels, its representation may be changed,
although in Platypus it is not changed. The meaning of the same information
may be different at different levels even when the representation is the same.

Although the meaning and representation of information does not normally
change between levels of a normal tower, it may well have to change in going
between the tower and the meta-evaluator that implements the tower.

15.8 Building languages with reflection

Our mixed-language interpretation is designed to allow many languages to be
built on top of it. Languages which can be converted readily to a procedural
form are most suitable for this: procedural and functional languages are easiest,
declarative and rule-based languages are harder.

We assume handling of such types as numbers to be made available under-
neath the implementation of reflection. Reflection does not help to describe
these, anyway, so nothing would be gained were it possible to include them in
the reflective system.

Most conventional language features map readily onto a reflective mixed-
language architecture. Occasionally there is a mismatch, such as it being natural
to try to make all calls reflective (which builds a tower level for each procedure
call).

Using jumpy reflectors (that assign to parts of the state, without saving the
old values on a stack) to change specific parts of a tower allows very natural
implementation of many common language features such as jumps, calls and
assignments.

Reflective features may be used to group together parts of a system, such as
all the operators of a language, for interpretation in a particular way.

As well as any languages implemented on top of the reflective system, there is
a base language which provides reflective facilities and some simple flow control
and calling operators. This is sufficient for running the rest of the system, so
long as all parts of the system are connected with integrity to the base language.

Reflection allows new features to be added to conventional languages, in-
cluding extreme examples such as a non-local exit that goes right out of several
levels of interpretation.

Procedure calls are to some extent built into the evaluator, but other features
are not so much so. Our procedure calling is naturally call-by-name, but call-
by-value may be implemented easily on top of this; such a facility is provided
in a form that is useful to many language implementations.

220 CHAPTER 15. RECAPITULATION

15.9 The base language

A language for use with the standard interpreter in the boring section of the
tower must be powerful enough to support both the standard interpreter and
the procedures that will run on it, which will typically be operators for other
languages.

The implementation of the base language has two parts: the operators them-
selves, and their shadows, which are run at the next meta-level in the tower.
(The last meta-tower is run in the substrate language on which the whole reflec-
tive system is built, and it is there that all operator definitions are eventually
evaluated.)

The language should provide operations typically needed by interpreters,
and those needed for reification and reflection. It is also desirable that the base
language be reasonably expressive.

As well as the fundamental reifiers and reflectors, it is convenient to provide
some jumpy reflectors that assign only part of the state; these are not only more
efficient, but also more expressive of many common language features that they
may be used to model.

In practice, we provide many more operators in the base language than are
strictly necessary. ([?] explains how to work out which operators are necessary.)

Reflective operators

Operators for reflection may be added to an existing language. With our model
for mixed-language interpretation, the same operators will work for any lan-
guage.

Reflective operators (reifiers and reflectors) are of two kinds, jumpy which
move data between program-as-agent and program-as-subject without automat-
ically creating new levels of interpretation, and pushy which create new levels
either providing data from the program-as-subject or using it to create a new
(or modified) program-as-subject. Jumpy operators are more primitive than
pushy operators, in that (on a conventional architecture) they may be used to
implement pushy operators, whereas, within one level of interpretation, pushy
operators may not be used as the primitive on which jumpy operators may be
built (other than by considerable wasted work).

One form of reflective operator is the grand reflective operator which reifies
or reflects the entire state of the system. However, it is more efficient, as well
as often more convenient, to reflect into just the part of the state required, and
so reflectors that set only specific parts of the state are also worth providing in
a practical system.

Reification of programs is homogenous between languages. The same reifiers
(and reflectors) may be used in any language, and the values returned have
closed into them all the linguistic information needed to understand the value
in any way that might be required.

15.10. A MODEL FOR THE META-EVALUATOR 221

15.10 A model for the meta-evaluator

The boring part of each tower is not really evaluated, but its evaluation is
mimicked by the meta-evaluator of that tower. The meta-evaluator has two
rôles: it implements finitely the infinite tower, and it stands in for any number
of levels.

To do this, it has to be able to absorb level shifts, to stop them going any
further along the tower. It does this by realizing new levels, (and abandoning
old ones), on demand, when it must extend the non-boring part of the tower,
and shadowing things itself when still on the boring section.

The code of the meta-evaluator can be similar to that of the standard eval-
uator, with the addition of some level-shifting code that would not, within the
tower, be allowed to exist within a single level, because it is capable of generating
(realizing) levels1.

The meta-evaluator is alongside the tower (from the tower’s point of view)
and both alongside and above the tower (from the meta-evaluator’s point of
view).

The meta-evaluator runs beside the lowest tower level that it can, that is,
one level above the highest one that is not mimicked by the meta-evaluator.
It follows this boundary by climbing up to new levels as it realizes them, and
climbing back off them when they are no longer needed.

There are two approaches to how the meta-evaluator should view data within
the tower, in terms of how each type of data is represented, and whether each
type appears as the same type inside and outside the tower, or as distinct types.
In this thesis, we hold the data in the same form in both, and hence, for example,
stack frames do not have to be re-encoded when reified or reflected.

The meta-evaluator must have a map from shadowed operators in the tower
to shadowing operators in the meta-evaluator. In a system with only one di-
mension to the tower, this map must be visible to the meta-evaluator but not
to the tower.

If the meta-evaluator implements the storage system of the tower, it must
also have a map from distinguished objects within the tower to variables in the
meta-evaluator. If the meta-evaluator and the tower share a storage system,
such a map is not needed.

15.11 An implementation of the meta-evaluator

Platypus is a trial implementation of a reflective tower-based evaluation system
in which data representations inside and outside the tower are the same. It has
been through two broadly similar implementation generations, one in C and one
in Common Lisp.

Dynamic typing is used throughout the system, both inside and outside the
tower. All objects in the tower are kept in a storage heap; in the C implemen-
tation this is scavenged by a stop-and-copy garbage collector, which must pay

1Within the tower, each procedure may be in only one level at a time.

222 CHAPTER 15. RECAPITULATION

attention to updating variables of the meta-evaluator as it moves the things to
which they point.

While several meta-evaluator variables point into the heap, it is not possible
for a program in the tower to find from an object in the heap what it corresponds
to in the meta-evaluator (although a meta-evaluator that makes this information
available could be written).

The meta-interpreter must contain:

• a meta-evaluator that mimics (shadows) the standard evaluator as well as
generating levels on demand;

• shadow operator definitions shadowing some of the operators in the tower’s
base language;

• and an argument evaluator for shadowing operators to use.

These are all fairly similar to their equivalents within the tower.
The meta-evaluator may be reduced to a very concise form built around one

function, which is appropriately very similar to the corresponding function for
the concise form of the standard internal evaluator for a tower. This function
consists of four procedure calls and two environment lookups.

The code for all the shadow operator definitions has much in common; in
particular, all operators that must evaluate all their arguments independently
share an argument evaluator mechanism. Such operators are built around prim-
itive procedures in the implementation language, by a macro-preprocessor, that
takes functions in the implementation language, and produces wrapper functions
for use as the shadow operators.

15.12 Results

Platypus has proved to be a practical interpretive system for Lisp-like languages,
and promises to be able to run at speeds comparable to other, non-reflective,
interpreted Lisp systems—it is already well within the factor of ten that I chose
initially as a suitable limit for regarding this new interpretation technique as
practical. There is certainly promise of being able to improve the performance,
and I would expect to reach speeds similar to those of non-reflective, single-
language interpreters. The usefulness of dynamic typing is clearly evident, and
the appropriateness of implementing reflective interpretation by shadowing has
been demonstrated.

Working with mixtures of two type systems, one for the substrate language
and one for the tower, was particularly confusing, and this should either be
avoided, or handled with careful planning, in future work in this area.

The amount of garbage generated is a potential problem, as all stack frames
are, in principle, built on the heap. The problem is reduced by using the stack
frames of the substrate system to store some of the data that might have oth-
erwise needed more frames to be built for very short-term use.

15.13. HISTORY AND FUTURE 223

Initializing the system is complicated by the number of cross-references and
self-references that must be set up. It would be useful to have some program
tools for generating (or gathering) the initialization code automatically from the
rest of the source code.

It is possible to produce very compact versions of both the evaluator and
the meta-evaluator, these being based on a pair of functions, boojum and snark,
that appear to encapsulate the essence of evaluation and meta-evaluation respec-
tively.

15.13 History and future

Reflection is a young field of Computer Science and formal logic (and an older
field of philosophy) and there is much yet to be explored in it. Enough is now
understood to make an intuitive grasp possible, and, although always touching
on the meta-physical, it is possible to explain it formally, although formalisms
in common use today do not express reflective concepts very well.

In three main areas of research on the topic, two present considerable scope
for further research, and the other presents scope for development and enhance-
ment of ideas that are now established:

• Understanding and describing reflection is a large and very open field.
Some forms of reflection have now been described and analyzed exten-
sively, particularly those concerning procedural languages, but there is
much more to be done, particularly on declarative languages.

The mathematical description of infinite reflective towers, using transfinite
numbers, is an intriguing field which could be developed much further,
particularly with reference to the type system needed to represent such
towers.

• Implementing reflective systems has been researched, to the extent that
it is possible to build fully tower-reflective interpreters of similar speed
to their nearest non-reflective equivalents [?]. This could be developed
further, and applied more widely.

• Application of reflection to real logical, computational and scientific prob-
lems has scarcely begun. To date, it has been used within the area of
language research, but little further.

15.14 Reflections

A reasonably efficient reflective evaluation system can emulate an infinite meta-
tower of evaluation, in remarkably few lines of Lisp. The most central of these
lines may be regarded as a refined form of generalized or parameterized evalu-
ator.

Perhaps somewhat fancifully, parallels may be drawn with non-computational
procedural activities, such as deliberation, and learning, in people.

224 CHAPTER 15. RECAPITULATION

The reflective approach to language definition avoids the conventional route
of definition in terms of something outside the the system, after the acknowl-
edgement that no system—neither computational nor mathematical—nor for
that matter those based on any other linguistic notation—can describe itself
completely. An outside reference—visible to the same observer—must always
be present, and we allow such a reference to be arbitrary, rather than from some
denotational framework from mathematics, for which in turn the same problem
of an outside reference also occurs.

15.15 Summary

Reflection and reification let programs access themselves and their interpreters
as data. This access is causal in nature: modifications a program makes to its
interpreter changes how the program runs.

Simple reflection lets a program access its code and state and interpreter.
Tower reflection also lets it access its means of interpretation—that is, the
mechanism by which a program is related to its interpreter, and thence to its
interpreter’s interpreter, etcetera.

We close over the interpreter when constructing the closure of the procedure,
and thence the tower of interpreters starting there, making it contain the whole
context in which the procedure is interpreted.

By making the language of each tower level an explicit part of that level—
a new contribution to this field — we extend reflection from being a tool for
reasoning about interpretation of programs to being one for reasoning about
language interpretation.

The meta-evaluator implementing a tower has two rôles: it implements
finitely the infinite tower, and stands in for any number of levels.

To do this, it must absorb level shifts, by realizing new levels, and abandon-
ing old ones, on demand.

We use a shadow map from shadowed operators in the tower to shadowing
operators in the meta-evaluator.

The meta-evaluator can itself be a program executed by a tower of inter-
preters, starting a meta-tower—an original development.

Platypus is an implementation of a reflective tower in which data represen-
tations inside and outside the tower are identical. It has two similar implemen-
tations, in C and in Lisp.

Platypus has proved to be a practical interpreter for Lisp-like languages,
and promises to be able to run at speeds comparable to non-reflective inter-
preted systems. The appropriateness of implementing reflective interpretation
by shadowing has been demonstrated.

Scheme, now, feels like Algol-60 (the world’s sweetest version of
Fortran), and I’d say that feel is more important than look.

Reuben Bert Mayo@cup.portal.com

Bibliography

[Abelson and Sussman] H. Abelson and G. Sussman with J. Suss-
man: Structure and Interpretation of Com-
puter Programs, MIT Press, 1985

[Agha] G. Agha: Actors—a model of concurrent
computation in distributed systems, The
MIT Press, 1986.

[ANSI C] ANSI X3J11: Draft proposed American Na-
tional Standard for Information Systems—
Programming Language C, ANSI document
X3J11/88-158 (December 1988)

[Barendregt] H. Barendregt: The Lambda Calculus: Its
syntax and semantics, Studies in Logic and
the Foundations of Mathematics, Volume
103, North-Holland (1981)

[Batali] J. Batali: Computational Introspection, MIT
AI Memo No. 701 (February 1983)

[Ben-Ari] M. Ben-Ari: Principles of Concurrent Pro-
gramming, Prentice-Hall, 1982

[Cardelli and Wagner] L. Cardelli and P. Wagner: On Understand-
ing Types, Data Abstraction and Polymor-
phism, Technical Report CS-85-14, Brown
University, Department of Computer Sci-
ence, 1985

[Carroll] L. Carroll:

[Clocksin and Mellish] W. Clocksin and C. Mellish: Programming
in Prolog, Springer-Verlag (1981)

[Danvy] O. Danvy: Across the bridge between Re-
flection and Partial Evaluation, Proceedings
of the WorkShop on Partial Evaluation and

225

226 BIBLIOGRAPHY

Mixed Computation, Dines Bjørner, Andrei
P. Ershov and Neil D. Jones (eds), North-
Holland, Gl. Avernes, Denmark (October
1987)

[Danvy and Malmkjær 88] O. Danvy and K. Malmkjær: Intensions and
extensions in a reflective tower, Proceedings
of the 1988 ACM conference on Lisp and
Functional Programming, Snowbird, Utah
(July 1988)

[Danvy and Malmkjær 8?] O. Danvy and K. Malmkjær: An approach
for formalizing computational reflection, un-
published, Köbenhavns Universitet, 1988

[Doyle] J. Doyle: A Model for Deliberation, Action,
and Introspection, MIT AI Laboratory Tech-
nical Report 581.

[Escher] M. Escher: The Graphic Work of M. C. Es-
cher, Meredith Press, 1967

[Futamura] Y. Futamura: Partial evaluation of compu-
tation process – an approach to a compiler-
compiler, Systems, Computers and Control
Vol 2 No 5 pp45-50 (1971)

[Gabriel] R. Gabriel: Performance and evaluation of
Lisp systems, The MIT Press, 1985.

[Goldberg and Robson] A. Goldberg, D. Robson: SmallTalk-80: The
Language and its implementation, Addison-
Wesley (1983)

[Gödel] K. Gödel: Über Formal Unentscheidbare
Sätze def Principia Mathematic und Ver-
wandter Systeme, I, Monatshefte für Math-
ematik und Physik, 38, 1931

[Hardy] S. Hardy: The Poplog programming system,
University of Sussex Cognitive Science Re-
search Paper No. 3, 1982

[Harpaz] Y. Harpaz: Migrating Common Lisp,
Harlequin Ltd, Chameleon report TR-87-46,
1987

[Haynes et al 84] C. Haynes, D. Friedman, M. Wand: Contin-
uations and Coroutines, CACM POPL 84?

BIBLIOGRAPHY 227

[Hopkins] D. Hopkins: A PostScript inter-
preter written in PostScript, Usenet
article in comp.lang.postscript
(don@BRILLIG.UMD.EDU), 27 Aug 89.

[Halstead] R. Halstead, Multilisp: A Language for
Concurrent Symbolic Computation, ACM
TOPLAS 7, October 1985, pp501–538.

[Johnson] S. Johnson: Yacc: Yet Another Compiler-
Compiler, Unix manual Volume 2B (July
1978)

[Jackson] J. Jackson, Harlequin Ltd: private commu-
nication

[Jones, Sestoft and Søndergaard] A. Jones, Sestoft and Søndergaard: MIX:
a self-applicable partial evaluator for exper-
iments in compiler generation, DIKU, Uni-
versity of Copenhagen (June 1987)

[Kranz et al] D. Kranz, R. Halstead & E. Mohr, Mul-T: A
High-Performance Parallel Lisp, in Proceed-
ings of SIGPLAN ’89 Conference on Pro-
gramming Language Design and Implemen-
tation, published by ACM Press, New York,
pp81–90, 1989

[Köhlbecker 86] E. Köhlbecker: Syntactic extensions in the
Programming Language Lisp, PhD disserta-
tion, Indiana University (August 1986)

[Köhlbecker et al 86] E. Köhlbecker, D. Friedman, M. Felleisen, B.
Duba: Hygienic Macro Expansion, Proceed-
ings of the 1986 ACM Conference on Lisp
and Functional Programming (1986)

[Köhlbecker and Wand] E. Köhlbecker and M. Wand: Macro-
by-example: Deriving Syntactic Transfor-
mations from their Specifications, Confer-
ence Record of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Pro-
gramming Languages (Munich, January,
1987)

[Landin] P. Landin: The Mechanical Evaluation of
Expressions, Computer Journal, Volume 6,
pp308-320, 1963

228 BIBLIOGRAPHY

[Lang and Pearlmutter] K. Lang and B. Pearlmutter: Oaklisp: an
object-oriented dialect of Scheme, Lisp and
Symbolic Computation, Volume 1, Number
1, 1988

[Lesk and Schmidt] M. Lesk and E. Schmidt: Lex—A Lexical
Analyzer Generator, Unix manual Volume
2B, July 1975

[Loeliger] R. Loeliger: Threaded Interpretive Lan-
guages, BYTE Publications, 1981.

[Magritte] R. Magritte: The Two Mysteries, 1966

[Miller] J. Miller, MultiScheme: A Parallel Process-
ing System, PhD. thesis, Massachussetts In-
stitute of Technology, 1987.

[Moss] J. Moss: Managing Stack Frames in
SmallTalk, Proceedings of the SIGPLAN ’87
Symposium on Interpreters and Interpretive
Techniques, St. Paul, Minnesota

[Mycroft] A. Mycroft: Abstract Interpretation and
Optimising Transformations of Applicative
Programs, Ph.D. thesis, Edinburgh Univer-
sity, 1981. Available as computer science re-
port CST-15-81.

[Occam] Inmos Ltd: Occam programming manual,
Prentice-Hall, 1984

[Osborne] R. Osborne: Speculative Computation in
MultiLisp, published in the Proceedings
of the 1990 ACCM Conference on Lisp
and Functional Programming, ACM Press,
ACM, New York, pp198–208.

[Padget] J. Padget: The ecology of Lisp, PhD thesis,
Bath University (1984)

[Padget and ffitch] J. Padget and J. ffitch: Closurize and Con-
centrate, School of Mathematical Sciences,
University of Bath

[Perdue and Waters] C. Perdue and R. Waters: Generators and
Gatherers, in Common Lisp the Language,
second edition, edited by G. Steele, Digital
Press, 1990

BIBLIOGRAPHY 229

[PostScript] Adobe Systems Incorporated: PostScript
Language Reference Manual, Addison-
Wesley, 1985.

[Rees and Clinger] Rees and W. Clinger (eds): Revised Revised
Revised Report on the algorithmic language
Scheme, Sigplan notices Vol 21 No 12 pp37-
39 (December 1986)

[Ryle] G. Ryle: The Concept of Mind, Peregrine
Books, 1949.

[Shivers] O. Shivers: Partial evaluation in Scheme,
SIGPLAN ’88 conference Programming
Language Design and Implementation, pub-
lished by ACM Press, New York, 1988

[Smith and des Rivières 84a] B. Smith and J. des Rivières: Reflection and
semantics in Lisp, Conference recordings of
14th Annual ACM Symposium on Principles
of Programming Languages, pp23-35, Salt
Lake City, Utah (January 1984)

[Smith and des Rivières 84b] B. Smith and J. des Rivières: The implemen-
tation of procedurally reflective languages,
Conference record of the 1984 ACM Sympo-
sium on Lisp and Functional Programming
pp341-347, Austin, Texas (August 1984)

[Smith] B. Smith: Reflection and semantics in a pro-
cedural language, PhD thesis MIT/LCS/TR-
272, MIT, Cambridge, Massachussetts (Jan-
uary 1982). Summarized in Batali, Compu-
tational Introspection, MIT AI-Memo 701.

[Steele 84] G. Steele: Common Lisp the Language, Dig-
ital Press (1984)

[Steele 90] G. Steele: Common Lisp the Language, sec-
ond edition Digital Press, 1990,

[Turing] A. Turing: On computable numbers, with
an application to the Entscheidungsprob-
lem, Proceedings of the London Mathemat-
ical Society, Ser. 2, 42 (1936-37) pp230-
265. Corrections, ibid (1937), pp544-546.
Reprinted in The Undecidable, edited by
Martin Davies, Raven Press, Hewlett, NY,
1965, pp115-154

230 BIBLIOGRAPHY

[Wand and Friedman] M. Wand and D. Friedman: The Mystery
of the Tower revealed: a non-reflective de-
scription of the reflective tower, Vol 1 No 1
pp11-38 of the International Journal of Lisp
and Symbolic Computation

[Winograd] T. Winograd: Understanding Natural Lan-
guage, Academic Press, New York, 1972

[Warren] D. Warren: An Improved Prolog Implemen-
tation which Optimizes Tail Recursion, Re-
search Paper 156, Department of Artificial
Intelligence, University of Edinburgh, 1980

[Watson and Tillotson] A. Watson and M. Tillotson: Efficient De-
compilation from Machine Code, Harlequin
Ltd, Chameleon report TR-89-69, 1989

BIBLIOGRAPHY 231

As a tailpiece, the Escher picture used for the PostScript timing tests is
presented here:

